




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
翠屏区高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 方程(x24)2+(y24)2=0表示的图形是( )A两个点B四个点C两条直线D四条直线2 已知F1,F2是椭圆和双曲线的公共焦点,M是它们的一个公共点,且F1MF2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A2BCD43 已知四个函数f(x)=sin(sinx),g(x)=sin(cosx),h(x)=cos(sinx),(x)=cos(cosx)在x,上的图象如图,则函数与序号匹配正确的是( )Af(x),g(x),h(x),(x)Bf(x),(x),g(x),h(x)Cg(x),h(x),f(x),(x)Df(x),h(x),g(x),(x)4 若函数y=ax(b+1)(a0,a1)的图象在第一、三、四象限,则有( )Aa1且b1Ba1且b0C0a1且b0D0a1且b05 已知数列满足().若数列的最大项和最小项分别为和,则( )A B C D6 已知定义在上的奇函数,满足,且在区间上是增函数,则 A、 B、C、 D、7 设xR,则“|x2|1”是“x2+x20”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件8 已知命题p:xR,2x3x;命题q:xR,x3=1x2,则下列命题中为真命题的是( )ApqBpqCpqDpq9 已知双曲线C:=1(a0,b0)的左、右焦点分别为F1,F2,过点F1作直线lx轴交双曲线C的渐近线于点A,B若以AB为直径的圆恰过点F2,则该双曲线的离心率为( )ABC2D10九章算术是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽AD3丈,长AB4丈,上棱EF2丈,EF平面ABCD.EF与平面ABCD的距离为1丈,问它的体积是( )A4立方丈 B5立方丈C6立方丈 D8立方丈 11若向量=(3,m),=(2,1),则实数m的值为( )ABC2D612定义在R上的奇函数f(x)满足f(x+3)=f(x),当0x1时,f(x)=2x,则f (2015)=( )A2B2CD 二、填空题13ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60,b=2,则c的值为14考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于15抛物线y2=4x上一点M与该抛物线的焦点F的距离|MF|=4,则点M的横坐标x=16设i是虚数单位,是复数z的共轭复数,若复数z=3i,则z=17已知函数的一条对称轴方程为,则函数的最大值为_【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想18用“”或“”号填空:30.830.7三、解答题19在直角坐标系xOy中,过点P(2,1)的直线l的倾斜角为45以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为sin2=4cos,直线l和曲线C的交点为A,B(1)求曲线C的直角坐标方程; (2)求|PA|PB| 20设函数,若对于任意x1,2都有f(x)m成立,求实数m的取值范围21某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如图(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指数不低于70,说明孩子幸福感强)(1)根据茎叶图中的数据完成列联表,并判断能否有的把握认为孩子的幸福感强与是否是留守儿童有关?幸福感强幸福感弱总计留守儿童非留守儿童总计1111(2)从15个留守儿童中按幸福感强弱进行分层抽样,共抽取5人,又在这5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率参考公式:附表:0.0500.0103.8416.63522已知抛物线C:x2=2y的焦点为F()设抛物线上任一点P(m,n)求证:以P为切点与抛物线相切的方程是mx=y+n;()若过动点M(x0,0)(x00)的直线l与抛物线C相切,试判断直线MF与直线l的位置关系,并予以证明23如图,在四棱锥PABCD中,平面PAD平面ABCD,AB=AD,BAD=60,E、F分别是AP、AD的中点,求证:(1)直线EF平面PCD;(2)平面BEF平面PAD24已知函数f(x)=(a0)的导函数y=f(x)的两个零点为0和3(1)求函数f(x)的单调递增区间;(2)若函数f(x)的极大值为,求函数f(x)在区间0,5上的最小值翠屏区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:方程(x24)2+(y24)2=0则x24=0并且y24=0,即,解得:,得到4个点故选:B【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力2 【答案】 C【解析】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(aa1),半焦距为c,由椭圆和双曲线的定义可知,设|MF1|=r1,|MF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2F1MF2=,由余弦定理可得4c2=(r1)2+(r2)22r1r2cos,在椭圆中,化简为即4c2=4a23r1r2,即=1,在双曲线中,化简为即4c2=4a12+r1r2,即=1,联立得, +=4,由柯西不等式得(1+)(+)(1+)2,即(+)24=,即+,当且仅当e1=,e2=时取等号即取得最大值且为故选C【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键难度较大3 【答案】 D【解析】解:图象是关于原点对称的,即所对应函数为奇函数,只有f(x);图象恒在x轴上方,即在,上函数值恒大于0,符合的函数有h(x)和(x),又图象过定点(0,1),其对应函数只能是h(x),那图象对应(x),图象对应函数g(x)故选:D【点评】本题主要考查学生的识图、用图能力,从函数的性质入手结合特殊值是解这一类选择题的关键,属于基础题4 【答案】B【解析】解:函数y=ax(b+1)(a0,a1)的图象在第一、三、四象限,根据图象的性质可得:a1,a0b10,即a1,b0,故选:B5 【答案】D【解析】试题分析:数列,当时,,即;当时,即.因此数列先增后减,为最大项,,最小项为,的值为故选D.考点:数列的函数特性.6 【答案】D【解析】,的周期为,又奇函数在区间上是增函数,在区间上是增函数,故选D.7 【答案】A【解析】解:由“|x2|1”得1x3,由x2+x20得x1或x2,即“|x2|1”是“x2+x20”的充分不必要条件,故选:A8 【答案】B【解析】解:因为x=1时,2131,所以命题p:xR,2x3x为假命题,则p为真命题令f(x)=x3+x21,因为f(0)=10,f(1)=10所以函数f(x)=x3+x21在(0,1)上存在零点,即命题q:xR,x3=1x2为真命题则pq为真命题故选B9 【答案】D【解析】解:设F1(c,0),F2(c,0),则l的方程为x=c,双曲线的渐近线方程为y=x,所以A(c, c)B(c, c)AB为直径的圆恰过点F2F1是这个圆的圆心AF1=F1F2=2cc=2c,解得b=2a离心率为=故选D【点评】本题考查了双曲线的性质,如焦点坐标、离心率公式10【答案】【解析】解析:选B.如图,设E、F在平面ABCD上的射影分别为P,Q,过P,Q分别作GHMNAD交AB于G,M,交DC于H,N,连接EH、GH、FN、MN,则平面EGH与平面FMN将原多面体分成四棱锥EAGHD与四棱锥FMBCN与直三棱柱EGHFMN.由题意得GHMNAD3,GMEF2,EPFQ1,AGMBABGM2,所求的体积为V(S矩形AGHDS矩形MBCN)EPSEGHEF(23)13125立方丈,故选B.11【答案】A【解析】解:因为向量=(3,m),=(2,1),所以3=2m,解得m=故选:A【点评】本题考查向量共线的充要条件的应用,基本知识的考查12【答案】B【解析】解:因为f(x+3)=f(x),函数f(x)的周期是3,所以f(2015)=f(36721)=f(1);又因为函数f(x)是定义R上的奇函数,当0x1时,f(x)=2x,所以f(1)=f(1)=2,即f(2015)=2故选:B【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出f(2015)=f(36721)=f(1)二、填空题13【答案】 【解析】解:ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60,b=2,由正弦定理可得:,解得:a=3,利用余弦定理:a2=b2+c22bccosA,可得:9=4+c22c,即c22c5=0,解得:c=1+,或1(舍去)故答案为:【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题14【答案】 【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,其中4个点构成平行四边形的选法有3个,4个点构成平行四边形的概率P=故答案为:【点评】本题考查古典概型及其概率计算公式的应用,是基础题确定基本事件的个数是关键15【答案】3 【解析】解:抛物线y2=4x=2px,p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,|MF|=4=x+=4,x=3,故答案为:3【点评】活用抛物线的定义是解决抛物线问题最基本的方法抛物线上的点到焦点的距离,叫焦半径到焦点的距离常转化为到准线的距离求解16【答案】10 【解析】解:由z=3i,得z=故答案为:10【点评】本题考查公式,考查了复数模的求法,是基础题17【答案】1【解析】18【答案】 【解析】解:y=3x是增函数,又0.80.7,30.830.7故答案为:【点评】本题考查对数函数、指数函数的性质和应用,是基础题三、解答题19【答案】 【解析】(1)sin2=4cos,2sin2=4cos,cos=x,sin=y,曲线C的直角坐标方程为y2=4x (2)直线l过点P(2,1),且倾斜角为45l的参数方程为(t为参数)代入 y2=4x 得t26t14=0设点A,B对应的参数分别t1,t2t1t2=14|PA|PB|=14 20【答案】 【解析】解:,f(x)=3x2x2=(3x+2)(x1),当x1,),(1,2时,f(x)0;当x(,1)时,f(x)0;f(x)在1,),(1,2上单调递增,在(,1)上单调递减;且f()=+2+5=5+,f(2)=8422+5=7;故fmax(x)=f(2)=7;故对于任意x1,2都有f(x)m成立可化为7m;故实数m的取值范围为(7,+)【点评】本题考查了导数的综合应用及恒成立问题的处理方法,属于中档题21【答案】(1)有的把握认为孩子的幸福感强与是否留守儿童有关;(2).【解析】试题解析:(1)列联表如下:幸福感强幸福感弱总计留守儿童6915非留守儿童18725总计241640有的把握认为孩子的幸福感强与是否留守儿童有关(2)按分层抽样的方法可抽出幸福感强的孩子2人,记作:,;幸福感强的孩子3人,记作:,“抽取2人”包含的基本事件有,共10个事件:“恰有一人幸福感强”包含的基本事件有,共6个故考点:1、 茎叶图及独立性检验的应用;2、古典概型概率公式.22【答案】 【解析】证明:()由抛物线C:x2=2y得,y=x2,则y=x,在点P(m,n)切线的斜率k=m,切线方程是yn=m(xm),即yn=mxm2,又点P(m,n)是抛物线上一点,m2=2n,切线方程是mx2n=yn,即mx=y+n ()直线MF与直线l位置关系是垂直由()得,设切点为P(m,n),则切线l方程为mx=y+n,切线l的斜率k=m,点M(,0),又点F(0,),此时,kMF= kkMF=m()=1,直线MF直线l 【点评】本题考查直线与抛物线的位置关系,导数的几何意义,直线垂直的条件等,属于中档题23【答案】 【解析】证明:(1)在PAD中,因为E,F分别为AP,AD的中点,所以EFPD又因为EF不在平面PCD中,PD平面PCD所以直线EF平面PCD(2)连接BD因为AB=AD,BAD=60所以ABD为正三角形因为F是AD的中点,所以BFAD因为平面PAD平面ABCD,BF平面ABCD,平面PAD平面ABCD=AD,所以BF平面PAD又因为BF平面EBF,所以平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025贵州遵义市住房和城乡建设局面向基层选调所属事业单位人员2人模拟试卷有答案详解
- 2025年牡丹江市高校毕业生留牡来牡就业创业专项行动工作的考前自测高频考点模拟试题及参考答案详解
- 2025年春季中国林业集团有限公司校园招聘考前自测高频考点模拟试题及答案详解(历年真题)
- 2025贵州惠水县公益性岗位招聘4人考前自测高频考点模拟试题完整参考答案详解
- 2025年福建省福州市长乐区行政服务中心管理委员会招聘2人考前自测高频考点模拟试题(含答案详解)
- 智能物流新纪元:2025年自动驾驶卡车在绿色物流中的应用报告
- 2025年纳米粒子在光电子行业的技术创新与市场应用报告
- 养殖场转让协议书 合同
- 2025年新能源汽车轻量化技术研究报告:材料创新与工艺优化
- 公积金自助协议书怎么弄
- 《机械制图(多学时)》中职全套教学课件
- 英语日常交际用语200句
- GB/T 8492-2024一般用途耐热钢及合金铸件
- 读懂诗家语省公开课金奖全国赛课一等奖微课获奖课件
- 山西省职校技能大赛(植物病虫害防治赛项)参考试题库(含答案)
- 安全生产培训内容
- 酒店设施维护与管理的重要性与实践:延长设备使用寿命降低维修成本
- 老年人认知障碍的早期识别与干预
- 新人教版版PEP小学英语(3-6年级)单词表(带音标)
- 小兵张嘎夺枪记(课本剧)
- 《电子商务法律法规》课程标准
评论
0/150
提交评论