




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题二 三角函数与平面向量 第3讲 平面向量练习一、选择题1.设a,b是两个非零向量.()A.若|ab|a|b|,则abB.若ab,则|ab|a|b|C.若|ab|a|b|,则存在实数,使得baD.若存在实数,使得ba,则|ab|a|b|解析对于A,可得cosa,b1,因此ab不成立;对于B,满足ab时|ab|a|b|不成立;对于C,可得cosa,b1,因此成立,而D显然不一定成立.答案C2.已知点A(1,1)、B(1,2)、C(2,1)、D(3,4),则向量在方向上的投影为()A. B.C. D.解析(2,1),(5,5),|5,故在方向上的投影为 .答案A3.已知a与b均为单位向量,其夹角为,有下列四个命题p1:|ab|1p2:|ab|1p3:|ab|1p4:|ab|1其中的真命题是()A.p1,p4 B.p1,p3C.p2,p3 D.p2,p4解析|a|b|1,且0,若|ab|1,则(ab)21,a22abb21,即ab,cos ab,;若|ab|1,同理求得ab,cos ab,故p1,p4正确,应选A.答案A4.若两个非零向量a,b满足|ab|ab|2|a|,则向量b与ab的夹角为()A. B. C. D.解析法一由已知,得|ab|ab|,将等式两边分别平方,整理可得ab0.由已知,得|ab|2|a|,将等式两边分别平方,可得a2b22ab4a2.将代入,得b23a2,即|b|a|.而b(ab)abb2b2,故cosb,ab.又b,ab0,所以b,ab.故选A.法二如图,作a,b,以OA,OB为邻边作平行四边形OACB,则ab,ab.由|ab|ab|2|a|,可得|2|,所以平行四边形OACB是矩形,a.从而|2|.由RtBOC中,|故cosBOC,所以BOC.从而b,abBOC,故选A.答案A5.(2014浙江卷)记maxx,yminx,y设a,b为平面向量,则()A.min|ab|,|ab|min|a|,|b|B.min|ab|,|ab|min|a|,|b|C.max|ab|2,|ab|2|a|2|b|2D.max|ab|2,|ab|2|a|2|b|2解析由三角形法则知min|ab|,|ab|与min|a|,|b|的大小不确定,由平行四边形法则知,max|ab|,|ab|所对角大于或等于90,由余弦定理知max|ab|2,|ab|2|a|2|b|2,故选D.答案D二、填空题6.ABC是边长为2的等边三角形,已知向量a,b满足2a,2ab,则下列结论中正确的是_(写出所有正确结论的编号).a为单位向量;b为单位向量;ab;b;(4ab).解析24|a|24,|a|1,故正确;(2ab)2ab,又ABC为等边三角形,|b|2,故错误;b,ab()22cos 602210,故错误;b,故正确;()()22440,(4ab),故正确.答案7.如图,在ABC中,C90,且ACBC3,点M满足2,则_.解析法一如图,建立平面直角坐标系.由题意知:A(3,0),B(0,3),设M(x,y),由2,得解得即M点坐标为(2,1),所以(2,1)(0,3)3.法二()22()23.答案38.已知e1,e2是平面单位向量,且e1e2,若平面向量b满足be1be21,则|b|_.解析不妨设bxe1ye2,则be1x1,be2y1,因此可得xy,所以|b|e1e2|.答案三、解答题9.已知向量a,b,且x.(1)求ab及|ab|;(2)若f(x)ab2|ab|的最小值是,求的值.解(1)abcos cos sin sin cos 2x,|ab|2,因为x,所以cos x0,所以|ab|2cos x.(2)由(1),可得f(x)ab2|ab|cos 2x4cos x,即f(x)2(cos x)2122.因为x,所以0cos x1.当0时,当且仅当cos x0时,f(x)取得最小值1,这与已知矛盾;当01时,当且仅当cos x时,f(x)取得最小值122,由已知得122,解得;当1时,当且仅当cos x1时,f(x)取得最小值14,由已知得14,解得,这与1相矛盾.综上所述.10.设向量a(sin x,sin x),b(cos x,sin x),x.(1)若|a|b|,求x的值;(2)设函数f(x)ab,求f(x)的最大值.解(1)由|a|2(sin x)2(sin x)24sin2x,|b|2(cos x)2(sin x)21,及|a|b|,得4sin2x1.又x,从而sin x,所以x.(2)f(x)absin xcos xsin2xsin 2xcos 2xsin,当x时,sin取最大值1.所以f(x)的最大值为.11.ABC的内角A,B,C 所对的边分别为a,b,c.向量m(a,b)与n(cos A,sin B)平行. (1)求A; (2)若a,b2,求ABC的面积.解(1)因为mn,所以asin Bbcos A0,由正弦定理,得sin Asin Bsin Bcos A0,又sin B0,从而tan A,由于0A,所以A.(2)法一由余弦定理,得a2b2c22bccos A,而a,b2,A,得74c22c,即c22c30,因为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学学生会主席竞选演讲稿
- 垃圾分类项目的实施方案
- 小儿泌尿系感染课件
- 出售折叠口罩机合同范本
- 乡镇个人房屋装修协议书
- 小儿推拿知识课件
- 家政加盟商合同转让协议书
- 期货从业资格之期货投资分析题库练习备考题含答案详解【突破训练】
- 难点解析-鲁教版(五四制)6年级数学下册期末试卷及完整答案详解(历年真题)
- 2025实习生培训协议范本
- 《血液储存要求》(WS 399-2012)试题及答案
- 原发性骨质疏松症诊疗指南(2022)解读
- 新概念英语“第一册”单词对照表
- 新生儿早期基本保健(EENC)-新生儿早期基本保健(EENC)概述(儿童保健课件)
- 加油站高处坠落事故现场处置方案
- 比亚迪汉DM-i说明书
- 心肾综合征及其临床处理
- 男性性功能障碍专家讲座
- GB/T 1040.3-2006塑料拉伸性能的测定第3部分:薄膜和薄片的试验条件
- 第37次全国计算机等级考试考务培训-课件
- 新生入学登记表新生入学情况表word模版
评论
0/150
提交评论