




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四章 相似矩阵1试用施密特法把下列向量组正交化:(1); (2)解(1)根据施密特正交化方法: 令,故得: 2下列矩阵是不是正交阵:(1); (2)解(1)第一个行向量非单位向量,故不是正交阵(2)该方阵每一个行向量均是单位向量,且两两正交,故为正交阵3设与都是阶正交阵,证明也是正交阵证明 因为是阶正交阵,故,故也是正交阵4求下列矩阵的特征值和特征向量:(1); (2); (3).并问它们的特征向量是否两两正交?解 (1)故的特征值为当时,解方程,由 得基础解系所以是对应于的全部特征值向量当时,解方程,由 得基础解系所以是对应于的全部特征向量故不正交(2)故的特征值为当时,解方程,由得基础解系故是对应于的全部特征值向量.当时,解方程,由得基础解系故是对应于的全部特征值向量;当时,解方程,由得基础解系故是对应于的全部特征值向量,所以两两正交(3) = , 当时,取为自由未知量,并令,设.故基础解系为当时,可得基础解系综上所述可知原矩阵的特征向量为5设方阵与相似,求.解 方阵与相似,则与的特征多项式相同,即6设都是阶方阵,且,证明与相似证明 则可逆 则与相似7设3阶方阵的特征值为;对应的特征向量依次为,求.解 根据特征向量的性质知可逆,得:可得得8设3阶对称矩阵的特征值6,3,3,与特征值6对应的特征向量为,求.解 设由,知因为3是的二重特征值,根据实对称矩阵的性质定理知的秩为1,故利用可推出秩为1.则存在实的使得成立由解得得9试求一个正交的相似变换矩阵,将下列对称矩阵化为对角矩阵:(1);(2)解(1)故得特征值为当时,由解得单位特征向量可取:当时,由解得单位特征向量可取: 当时,由解得单位特征向量可取: 得正交阵,(2),故得特征值为当时,由解得此二个向量正交,单位化后,得两个单位正交的特征向量,单位化得当时,由解得单位化:得正交阵10(1)设,求;(2)设,求解(1)是实对称
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年职业规划师资格考试试卷及答案
- 2025年行业发展趋势与政策分析考试题及答案
- 2025年人口与发展研究生入学考试试卷及答案
- 2025年区域经济与发展战略分析试卷及答案
- 2025年企业税务筹划考试试卷及答案
- 2025年建筑安全与质量管理考试试题及答案
- 2025年广告设计师职业资格考试卷及答案
- 2025年中国立式移动冰箱行业市场全景分析及前景机遇研判报告
- 2024年度浙江省护师类之主管护师通关考试题库带答案解析
- 中医护理在疼痛中的应用
- GB/T 29256.3-2012纺织品机织物结构分析方法第3部分:织物中纱线织缩的测定
- GB 16663-1996醇基液体燃料
- 《债法总论讲义大纲》课件
- SY∕T 7298-2016 陆上石油天然气开采钻井废物处置污染控制技术要求
- 测试工具键盘客显机-顾客显示屏led8说明书
- 多媒体设备日常维护与维修服务方案
- 卷烟工厂MES系统技术方案
- 辊压机培训ppt课件
- 译林小学英语5B教材分析
- 江苏省常州市2024届高一数学下学期期末质量调研试题(含解析)
- 新标准大学英语(第二版)综合教程2 Unit 1 A篇练习答案及课文翻译
评论
0/150
提交评论