




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黄梅县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知f(x)=4+ax1的图象恒过定点P,则点P的坐标是( )A(1,5)B(1,4)C(0,4)D(4,0)2 已知i为虚数单位,则复数所对应的点在( )A第一象限B第二象限C第三象限D第四象限3 已知函数,且,则( )A B C D【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力4 若函数f(x)=a(xx3)的递减区间为(,),则a的取值范围是( )Aa0B1a0Ca1D0a15 如图,在平面直角坐标系中,锐角、及角+的终边分别与单位圆O交于A,B,C三点分别作AA、BB、CC垂直于x轴,若以|AA|、|BB|、|CC|为三边长构造三角形,则此三角形的外接圆面积为( )ABCD6 直线:(为参数)与圆:(为参数)的位置关系是()A相离 B相切 C相交且过圆心 D相交但不过圆心7 函数的定义域为( )Ax|1x4Bx|1x4,且x2Cx|1x4,且x2Dx|x48 数列1,4,7,10,(1)n(3n2)的前n项和为Sn,则S11+S20=( )A16B14C28D309 从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )ABCD10由小到大排列的一组数据x1,x2,x3,x4,x5,其中每个数据都小于1,则样本1,x1,x2,x3,x4,x5的中位数为( )ABCD11双曲线E与椭圆C:1有相同焦点,且以E的一个焦点为圆心与双曲线的渐近线相切的圆的面积为,则E的方程为( )A.1 B.1C.y21 D.112在如图55的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+z的值为( )120.51xyzA1B2C3D4二、填空题13如图,在三棱锥中,为等边三角形,则与平面所成角的正弦值为_.【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力14抛物线y2=8x上到焦点距离等于6的点的坐标是15对于函数,“的图象关于y轴对称”是“”的 条件 (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)16二面角l内一点P到平面,和棱l的距离之比为1:2,则这个二面角的平面角是度17f(x)=x(xc)2在x=2处有极大值,则常数c的值为 14已知集合,若3M,5M,则实数a的取值范围是18已知两个单位向量满足:,向量与的夹角为,则 .三、解答题19某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如图(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指数不低于70,说明孩子幸福感强)(1)根据茎叶图中的数据完成列联表,并判断能否有的把握认为孩子的幸福感强与是否是留守儿童有关?幸福感强幸福感弱总计留守儿童非留守儿童总计1111(2)从15个留守儿童中按幸福感强弱进行分层抽样,共抽取5人,又在这5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率参考公式:附表:0.0500.0103.8416.63520如图,四棱锥PABCD中,PD平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,求证:PCBC;()求三棱锥CDEG的体积;()AD边上是否存在一点M,使得PA平面MEG若存在,求AM的长;否则,说明理由 21已知集合A=x|a1x2a+1,B=x|0x1(1)若a=,求AB(2)若AB=,求实数a的取值范围 22已知Sn为等差数列an的前n项和,且a4=7,S4=16(1)求数列an的通项公式;(2)设bn=,求数列bn的前n项和Tn23已知m0,函数f(x)=2|x1|2x+m|的最大值为3()求实数m的值;()若实数a,b,c满足a2b+c=m,求a2+b2+c2的最小值 24在平面直角坐标系中,以坐标原点为极点,x轴非负半轴为极轴建立极坐标系已知直线l过点P(1,0),斜率为,曲线C:=cos2+8cos()写出直线l的一个参数方程及曲线C的直角坐标方程;()若直线l与曲线C交于A,B两点,求|PA|PB|的值 黄梅县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】解:令x1=0,解得x=1,代入f(x)=4+ax1得,f(1)=5,则函数f(x)过定点(1,5)故选A2 【答案】A【解析】解: =1+i,其对应的点为(1,1),故选:A3 【答案】D4 【答案】A【解析】解:函数f(x)=a(xx3)的递减区间为(,)f(x)0,x(,)恒成立即:a(13x2)0,x(,)恒成立13x20成立a0故选A【点评】本题主要考查函数单调性的应用,一般来讲已知单调性,则往往转化为恒成立问题去解决5 【答案】 A【解析】(本题满分为12分)解:由题意可得:|AA|=sin、|BB|=sin、|CC|=sin(+),设边长为sin(+)的所对的三角形内角为,则由余弦定理可得,cos=coscos=coscos=sinsincoscos=cos(+),(0,)+(0,)sin=sin(+)设外接圆的半径为R,则由正弦定理可得2R=1,R=,外接圆的面积S=R2=故选:A【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,正弦定理,圆的面积公式在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题6 【答案】D【解析】【知识点】直线与圆的位置关系参数和普通方程互化【试题解析】将参数方程化普通方程为:直线:圆:圆心(2,1),半径2圆心到直线的距离为:,所以直线与圆相交。又圆心不在直线上,所以直线不过圆心。故答案为:D7 【答案】B【解析】解:要使函数有意义,只须,即,解得1x4且x2,函数f(x)的定义域为x|1x4且x2故选B8 【答案】B【解析】解:an=(1)n(3n2),S11=()+(a2+a4+a6+a8+a10)=(1+7+13+19+25+31)+(4+10+16+22+28)=16,S20=(a1+a3+a19)+(a2+a4+a20)=(1+7+55)+(4+10+58)=+=30,S11+S20=16+30=14故选:B【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用9 【答案】A【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,故取出的3个数可作为三角形的三边边长的概率P=故选:A【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件10【答案】C【解析】解:因为x1x2x3x4x51,题目中数据共有六个,排序后为x1x3x51x4x2,故中位数是按从小到大排列后第三,第四两个数的平均数作为中位数,故这组数据的中位数是(x5+1)故选:C【点评】注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数11【答案】【解析】选C.可设双曲线E的方程为1,渐近线方程为yx,即bxay0,由题意得E的一个焦点坐标为(,0),圆的半径为1,焦点到渐近线的距离为1.即1,又a2b26,b1,a,E的方程为y21,故选C.12【答案】A【解析】解:因为每一纵列成等比数列,所以第一列的第3,4,5个数分别是,第三列的第3,4,5个数分别是,又因为每一横行成等差数列,第四行的第1、3个数分别为,所以y=,第5行的第1、3个数分别为,所以z=所以x+y+z=+=1故选:A【点评】本题主要考查等差数列、等比数列的通项公式等基础知识,考查运算求解能力二、填空题13【答案】 【解析】14【答案】(4,) 【解析】解:抛物线方程为y2=8x,可得2p=8, =2抛物线的焦点为F(2,0),准线为x=2设抛物线上点P(m,n)到焦点F的距离等于6,根据抛物线的定义,得点P到F的距离等于P到准线的距离,即|PF|=m+2=6,解得m=4,n2=8m=32,可得n=4,因此,点P的坐标为(4,)故答案为:(4,)【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标着重考查了抛物线的定义与标准方程等知识,属于基础题15【答案】必要而不充分【解析】试题分析:充分性不成立,如图象关于y轴对称,但不是奇函数;必要性成立,所以的图象关于y轴对称.考点:充要关系【名师点睛】充分、必要条件的三种判断方法1.定义法:直接判断“若p则q”、“若q则p”的真假并注意和图示相结合,例如“pq”为真,则p是q的充分条件2.等价法:利用pq与非q非p,qp与非p非q,pq与非q非p的等价关系,对于条件或结论是否定式的命题,一般运用等价法3.集合法:若AB,则A是B的充分条件或B是A的必要条件;若AB,则A是B的充要条件16【答案】75度 【解析】解:点P可能在二面角l内部,也可能在外部,应区别处理当点P在二面角l的内部时,如图,A、C、B、P四点共面,ACB为二面角的平面角,由题设条件,点P到,和棱l的距离之比为1:2可求ACP=30,BCP=45,ACB=75故答案为:75【点评】本题考查与二面角有关的立体几何综合题,考查分类讨论的数学思想,正确找出二面角的平面角是关键17【答案】6 【解析】解:f(x)=x32cx2+c2x,f(x)=3x24cx+c2,f(2)=0c=2或c=6若c=2,f(x)=3x28x+4,令f(x)0x或x2,f(x)0x2,故函数在(,)及(2,+)上单调递增,在(,2)上单调递减,x=2是极小值点故c=2不合题意,c=6故答案为6【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式18【答案】【解析】考点:向量的夹角【名师点睛】平面向量数量积的类型及求法(1)求平面向量的数量积有三种方法:一是定义;二是坐标运算公式;三是利用数量积的几何意义(2)求较复杂的平面向量的数量积的运算时,可先利用平面向量数量积的运算律或相减公式进行化简三、解答题19【答案】(1)有的把握认为孩子的幸福感强与是否留守儿童有关;(2).【解析】试题解析:(1)列联表如下:幸福感强幸福感弱总计留守儿童6915非留守儿童18725总计241640有的把握认为孩子的幸福感强与是否留守儿童有关(2)按分层抽样的方法可抽出幸福感强的孩子2人,记作:,;幸福感强的孩子3人,记作:,“抽取2人”包含的基本事件有,共10个事件:“恰有一人幸福感强”包含的基本事件有,共6个故考点:1、 茎叶图及独立性检验的应用;2、古典概型概率公式.20【答案】 【解析】解:(I)证明:PD平面ABCD,PDBC,又ABCD是正方形,BCCD,PDICE=D,BC平面PCD,又PC面PBC,PCBC(II)解:BC平面PCD,GC是三棱锥GDEC的高E是PC的中点,(III)连接AC,取AC中点O,连接EO、GO,延长GO交AD于点M,则PA平面MEG下面证明之:E为PC的中点,O是AC的中点,EO平面PA, 又EO平面MEG,PA平面MEG,PA平面MEG,在正方形ABCD中,O是AC中点,OCGOAM,所求AM的长为 【点评】本题主要考查线面平行与垂直关系、多面体体积计算等基础知识,考查空间想象能、逻辑思维能力、运算求解能力和探究能力、考查数形结合思想、化归与转化思想21【答案】【解析】解:(1)当a=时,A=x|,B=x|0x1AB=x|0x1(2)若AB=当A=时,有a12a+1a2当A时,有2a或a2综上可得,或a2【点评】本题主要考查了集合交集的求解,解题时要注意由AB=时,要考虑集合A=的情况,体现了分类讨论思想的应用22【答案】 【解析】解:(1)设等差数列an的公差为d,依题意得(2分)解得:a1=1,d=2an=2n1(2)由得(7分)(11分)(12分)【点评】本题考查等差数列的通项公式的求法及数列的求和,突出考查裂项法求和的应用,属于中档题23【答案】 【解析】解:()f(x)=2|x1|2x+m|=|2x2|2x+m|(2x2)(2x+m)|=|m+2|m0,f(x)|m+2|=m+2,当x=1时取等号,f(x)max=m+2,又f(x)的最大值为3,m+2=3,即m=1()根据柯西不等式得:(a2+b2+c2)12+(2)2+12(a2b+c)2,a2b+c=m=1,当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产品发布与市场营销策划一体化模板
- 在线儿童思维培训合同
- 国学经典450字14篇
- 公司会议组织方案表格模板(会议室使用场景)
- 商铺租赁合同版本对比
- 司法鉴定中心资产评估鉴定人招聘笔试经典考题含答案
- 农村宅基地及房屋转让协议
- 农民农产品购销与质量控制协议
- 高二文言文学习-词汇与语法的深化
- 马鞍山市重点中学2026届高一化学第一学期期末考试试题含解析
- 红十字急救包扎技术培训课件
- 中医辨证施护课件
- 狂犬处置门诊管理制度
- T/CAQI 18-2016婴幼儿室内空气质量分级
- 纳米复合高分子膜材料企业制定与实施新质生产力项目商业计划书
- 能效管理合同协议书模板
- 禁毒社工考试试题及答案
- 值长面试题及答案
- 2025既有办公建筑体检评价标准
- 煤矿其他从业人员培训课件
- 义警队伍管理制度
评论
0/150
提交评论