




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷仲巴县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 在二项式(x3)n(nN*)的展开式中,常数项为28,则n的值为( )A12B8C6D42 双曲线E与椭圆C:1有相同焦点,且以E的一个焦点为圆心与双曲线的渐近线相切的圆的面积为,则E的方程为( )A.1 B.1C.y21 D.13 直线的倾斜角是( )ABCD4 函数f(x)=cos2xcos4x的最大值和最小正周期分别为( )A,B,C,D,5 设曲线y=ax2在点(1,a)处的切线与直线2xy6=0平行,则a=( )A1BCD16 某三棱锥的三视图如图所示,该三棱锥的体积是( )A 2 B4 C D【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.7 如图,ABC所在平面上的点Pn(nN*)均满足PnAB与PnAC的面积比为3;1, =(2xn+1)(其中,xn是首项为1的正项数列),则x5等于( )A65B63C33D318 抛物线y=x2的焦点坐标为( )A(0,)B(,0)C(0,4)D(0,2)9 已知变量满足约束条件,则的取值范围是( )A B C D10如图,正方体ABCDA1B1C1D1的棱线长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是( )AACBEBEF平面ABCDC三棱锥ABEF的体积为定值D异面直线AE,BF所成的角为定值11满足下列条件的函数中,为偶函数的是( )A. B. C. D.【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.12某程序框图如图所示,则该程序运行后输出的S的值为( )A1BCD二、填空题13对于映射f:AB,若A中的不同元素有不同的象,且B中的每一个元素都有原象,则称f:AB为一一映射,若存在对应关系,使A到B成为一一映射,则称A到B具有相同的势,给出下列命题:A是奇数集,B是偶数集,则A和B具有相同的势;A是平面直角坐标系内所有点形成的集合,B是复数集,则A和B不具有相同的势;若区间A=(1,1),B=R,则A和B具有相同的势其中正确命题的序号是14计算sin43cos13cos43sin13的值为15在三棱柱ABCA1B1C1中,底面为棱长为1的正三角形,侧棱AA1底面ABC,点D在棱BB1上,且BD=1,若AD与平面AA1C1C所成的角为,则sin的值是16曲线C是平面内到直线l1:x=1和直线l2:y=1的距离之积等于常数k2(k0)的点的轨迹给出下列四个结论:曲线C过点(1,1);曲线C关于点(1,1)对称;若点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|+|PB|不小于2k;设p1为曲线C上任意一点,则点P1关于直线x=1、点(1,1)及直线y=1对称的点分别为P1、P2、P3,则四边形P0P1P2P3的面积为定值4k2其中,所有正确结论的序号是17设复数z满足z(23i)=6+4i(i为虚数单位),则z的模为18函数f(x)=的定义域是三、解答题19已知函数f(x)=exax1(a0,e为自然对数的底数)(1)求函数f(x)的最小值;(2)若f(x)0对任意的xR恒成立,求实数a的值20(本题满分12分)已知数列的前项和为,且,().(1)求数列的通项公式;(2)记,是数列的前项和,求.【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前项和.重点突出对运算及化归能力的考查,属于中档难度.21已知函数y=x+有如下性质:如果常数t0,那么该函数在(0,上是减函数,在,+)上是增函数(1)已知函数f(x)=x+,x1,3,利用上述性质,求函数f(x)的单调区间和值域;(2)已知函数g(x)=和函数h(x)=x2a,若对任意x10,1,总存在x20,1,使得h(x2)=g(x1)成立,求实数a的值 22在ABC中,内角A,B,C所对的边分别是a,b,c,已知tanA=,c=()求;()若三角形ABC的面积为,求角C23从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )ABCD24某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形()求出f(5);()利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式仲巴县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:展开式通项公式为Tr+1=(1)rx3n4r,则二项式(x3)n(nN*)的展开式中,常数项为28,n=8,r=6故选:B【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题2 【答案】【解析】选C.可设双曲线E的方程为1,渐近线方程为yx,即bxay0,由题意得E的一个焦点坐标为(,0),圆的半径为1,焦点到渐近线的距离为1.即1,又a2b26,b1,a,E的方程为y21,故选C.3 【答案】A【解析】解:设倾斜角为,直线的斜率为,tan=,0180,=30故选A【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握4 【答案】B【解析】解:y=cos2xcos4x=cos2x(1cos2x)=cos2xsin2x=sin22x=,故它的周期为=,最大值为=故选:B5 【答案】A【解析】解:y=2ax,于是切线的斜率k=y|x=1=2a,切线与直线2xy6=0平行有2a=2a=1故选:A【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率6 【答案】B 7 【答案】 D【解析】解:由=(2xn+1),得+(2xn+1)=,设,以线段PnA、PnD作出图形如图,则,则,即xn+1=2xn+1,xn+1+1=2(xn+1),则xn+1构成以2为首项,以2为公比的等比数列,x5+1=224=32,则x5=31故选:D【点评】本题考查了平面向量的三角形法则,考查了数学转化思想方法,训练了利用构造法构造等比数列,考查了计算能力,属难题8 【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,焦点坐标为(0,2)故选:D【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键9 【答案】A【解析】试题分析:作出可行域,如图内部(含边界),表示点与原点连线的斜率,易得,所以故选A考点:简单的线性规划的非线性应用10【答案】 D【解析】解:在正方体中,ACBD,AC平面B1D1DB,BE平面B1D1DB,ACBE,故A正确;平面ABCD平面A1B1C1D1,EF平面A1B1C1D1,EF平面ABCD,故B正确;EF=,BEF的面积为定值EF1=,又AC平面BDD1B1,AO为棱锥ABEF的高,三棱锥ABEF的体积为定值,故C正确;利用图形设异面直线所成的角为,当E与D1重合时sin=,=30;当F与B1重合时tan=,异面直线AE、BF所成的角不是定值,故D错误;故选D11【答案】D.【解析】12【答案】 C【解析】解:第一次循环 第二次循环得到的结果 第三次循环得到的结果第四次循环得到的结果所以S是以4为周期的,而由框图知当k=2011时输出S2011=5024+3所以输出的S是故选C二、填空题13【答案】 【解析】解:根据一一映射的定义,集合A=奇数B=偶数,不妨给出对应法则加1则AB是一一映射,故正确;对设Z点的坐标(a,b),则Z点对应复数a+bi,a、bR,复合一一映射的定义,故不正确;对,给出对应法则y=tanx,对于A,B两集合可形成f:AB的一一映射,则A、B具有相同的势;正确故选:【点评】本题借助考查命题的真假判断,考查一一映射的定义,属于基础题型,考查考生对新定义题的理解与应用能力14【答案】 【解析】解:sin43cos13cos43sin13=sin(4313)=sin30=,故答案为15【答案】 【解析】解:如图所示,分别取AC,A1C1的中点O,O1,连接OO1,取OE=1,连接DE,B1O1,AEBOAC,侧棱AA1底面ABC,三棱柱ABCA1B1C1是直棱柱由直棱柱的性质可得:BO侧面ACC1A1四边形BODE是矩形DE侧面ACC1A1DAE是AD与平面AA1C1C所成的角,为,DE=OBAD=在RtADE中,sin=故答案为:【点评】本题考查了直棱柱的性质、空间角、空间位置关系、等边三角形的性质,考查了推理能力与计算能力,属于中档题16【答案】 【解析】解:由题意设动点坐标为(x,y),则利用题意及点到直线间的距离公式的得:|x+1|y1|=k2,对于,将(1,1)代入验证,此方程不过此点,所以错;对于,把方程中的x被2x代换,y被2y 代换,方程不变,故此曲线关于(1,1)对称正确;对于,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|x+1|,|PB|y1|PA|+|PB|2=2k,正确;对于,由题意知点P在曲线C上,根据对称性,则四边形P0P1P2P3的面积=2|x+1|2|y1|=4|x+1|y1|=4k2所以正确故答案为:【点评】此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性,属于基础题17【答案】2 【解析】解:复数z满足z(23i)=6+4i(i为虚数单位),z=,|z|=2,故答案为:2【点评】本题主要考查复数的模的定义,复数求模的方法,利用了两个复数商的模等于被除数的模除以除数的模,属于基础题18【答案】x|x2且x3 【解析】解:根据对数函数及分式有意义的条件可得解可得,x2且x3故答案为:x|x2且x3三、解答题19【答案】 【解析】解:(1)f(x)=exax1(a0),f(x)=exa,由f(x)=exa=0得x=lna,由f(x)0得,xlna,此时函数单调递增,由f(x)0得,xlna,此时函数单调递减,即f(x)在x=lna处取得极小值且为最小值,最小值为f(lna)=elnaalna1=aalna1(2)若f(x)0对任意的xR恒成立,等价为f(x)min0,由(1)知,f(x)min=aalna1,设g(a)=aalna1,则g(a)=1lna1=lna,由g(a)=0得a=1,由g(x)0得,0x1,此时函数单调递增,由g(x)0得,x1,此时函数单调递减,g(a)在a=1处取得最大值,即g(1)=0,因此g(a)0的解为a=1,a=120【答案】【解析】(1)当时,;1分当时,当时,整理得.3分数列是以3为首项,公比为3的等比数列.数列的通项公式为.5分21【答案】 【解析】解:(1)由已知可以知道,函数f(x)在x1,2上单调递减,在x2,3上单调递增,f(x)min=f(2)=2+2=4,又f(1)=1+4=5,f(3)=3+=;f(1)f(3)所以f(x)max=f(1)=5所以f(x)在x1,3的值域为4,5(2)y=g(x)=2x+1+8设=2x+1,x0,1,13,则y=8,由已知性质得,当1u2,即0x时,g(x)单调递减,所以递减区间为0,;当2u3,即x1时,g(x)单调递增,所以递增区间为,1;由g(0)=3,g()=4,g(1)=,得g(x)的值域为4,3因为h(x)=x2a为减函数,故h(x)12a,2a,x0,1根据题意,g(x)的值域为h(x)的值域的子集,从而有,所以a= 22【答案】 【解析】解:()由题意知,tanA=,则=,即有sinAsinAcosC=cosAsinC,所以sinA=sinAcosC+cosAsinC=sin(A+C)=sinB,由正弦定理,a=b,则=1;()因为三角形ABC的面积为,a=b、c=,所以S=absinC=a2sinC=,则,由余弦定理得, =,由得,cosC+sinC=1,则2sin(C+)=1,sin(C+)=,又0C,则C+,即C+=,解得C= 【点评】本题考查正弦定理,三角形的面积公式,以及商的关系、两角和的正弦公式等,注意内角的范围,属于中档题23
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论