抛物线的几何性质说课稿.doc_第1页
抛物线的几何性质说课稿.doc_第2页
抛物线的几何性质说课稿.doc_第3页
抛物线的几何性质说课稿.doc_第4页
抛物线的几何性质说课稿.doc_第5页
全文预览已结束

VIP免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

抛物线的几何性质说课稿抛物线的几何性质说课稿尊敬的各位评委、老师:大家好!我是来,今天我说课的内容是抛物线的几何性质,第一课时,选自人教B版高中数学教科书选修2-1。下面,我就从教材分析、教学方法、学法指导、教学过程、设计理念五个方面阐述我对本节课的构思。一、 教材分析:1、 在教材中的地位和作用:从抛物线知识结构来讲,研究抛物线主要包括三个环节:根据定义求方程,利用方程讨论几何性质,说明性质在实际中的应用。本节课正是在学生已有抛物线定义、标准方程的基础上对其几何性质的研究,为利用性质解决实际问题提供了理论依据。从学科角度来讲,抛物线是在椭圆和双曲线之后的又一重要圆锥曲线,通过对它的学习,一方面丰富完善了圆锥曲线知识体系,另一方面也是“用方程研究曲线”这一基本方法的再次强化,体现了数学的和谐统一,为今后用代数方法研究几何问题打下了基础,起到了承上启下的重要作用。2、 教学目标:根据新课标要求,考虑到高二学生的心理、思维日渐成熟,初步具有了运用所学知识方法探究新知识的能力,我将本节课的教学目标设定为: (知识与技能目标:) 掌握抛物线的几何性质; 能够应用抛物线的几何性质解决一些简单问题。 (过程与方法目标: ) 学生经历观察、分析、讨论的过程,类比研究椭圆、双曲线性质的方法探究出抛物线的几何性质,掌握利用方程研究曲线性质的基本方法,体会数形结合的思想。(情感态度与价值观目标:)通过本节课的学习使学生进一步感受圆锥曲线在刻画现实世界和解决实际问题中的作用,培养学生独立思考、合作交流的良好个性品质。3、重点、难点: 学生在高一已经接触过抛物线的图形特征,当时是从函数角度简单研究了它的顶点、对称轴。现在,随着学生认知水平的提高需要从更高层面审视这种曲线的几何本质,并且抛物线的几何性质在实际生活中有广泛的应用,因此本节课的教学重点为:抛物线的几何性质;从学生已有知识出发,学生往往注重对图形的直观感知,而忽视对方程中隐含条件的挖掘,另外,学生的应用意识、数学建模能力比较薄弱,所以本节课的难点为:抛物线几何性质的应用。二、 教学方法:这一节与椭圆、双曲线几何性质的知识结构相似,研究方法为学生所熟悉,这使学生的自主探究活动具备良好的基础。但是学生思维的全面性、深刻性,以及数形结合思想有待进一步培养加强。基于以上分析,本节课我采用启发探究式的教学方法,以问题的提出、问题的解决为主线,充分体现以学生为主体的教学理念。为了展现丰富生动的教学内容,我利用多媒体技术进行辅助教学。三、学法指导:在教学中,采用类比学习法,通过探究发现、合作交流、归纳反思等数学活动,倡导学生主动参与,让学习过程成为学生心灵愉悦的主动认知过程。四、 教学过程: 为了更好的完成本节课的教学目标,结合自己对新课程理念中“用教材教而不是教教材”的理解,在尊重教材的基础上,我对课本内容进行了整合、提炼,将教学过程设计为以下五个环节:创设情境,引入新课;类比归纳,探究新知;学以致用,拓展思维;归纳小结,巩固落实;布置作业,课下探究。 下面让我们一起进入课堂教学的第一个环节:环节一:创设情境,引入新课: 上课伊始,我首先安排学生观看如下视频(30秒播放视频),根据这段货船撞桥事件的新闻,提出开放性问题让学生讨论交流:货船要想安全过桥,需要具备哪些条件?从学生丰富多样的回答中提炼,得到对本节内容有益的结果:货船的高度要有所限制,货船要尽量沿桥拱中轴线航行。因此,实际生活中船过桥时要有高度限制,数学问题随之产生:例1:若新建大桥的桥拱为抛物线型,其水面宽度为4米,拱顶离水面3米,方形货船宽2米,请你为过往船只设个安全提示牌,货船不得高于多少时能安全通过大桥?(不考虑货船吃水深度)这个问题学生似曾相识,但此时出现更有新意。我并不急于让学生作答,而是发问:解决这个问题要用到抛物线的哪方面知识?学生可能回答出:对称性或相似的结果。但很难抓住问题的本质,从而我进一步提出:你是如何得到这个结果的呢?引发学生思考,导出本节课的主题。这个环节的目的在于借助实际问题为切入点引入新课,激发学生学习的兴趣,体现数学学习的价值,使学生主动的、积极的寻求解决问题的途径,类比归纳,探究新知。环节二、类比归纳,探究新知:首先请同学们回忆两个问题:(1) 抛物线的定义是什么?抛物线的标准方程的形式有哪些?(2) 椭圆、双曲线几何性质都研究了哪些内容?研究方法是什么?目的在于:激活学生已有的知识结构,突出圆锥曲线体系研究的一贯性、系统性,为下面学生的自主探究活动指明方向。这里如果学生回忆不起来用方程研究几何性质的方法,则可以举这样一个具体的例子:方程的几何性质如何得出的呢?教师进行适时的启发引导,而后再进入下面的探究一:探究方程的几何性质。 这个探究目的在于使学生掌握利用方程研究曲线性质的方法,使一个平淡的性质陈述过程成为学生的一次生动而有价值的学习体验。 当学生沉浸在得到了开口向右的抛物线的几何性质的喜悦之时,教师再一次抛出探究问题: 探究其余三种形式抛物线的几何性质。让学生以表格的形式给出探究结果。这样设计是为了强化类比思想,让学生在辨析比较中掌握抛物线的几何性质。由于这是本节课的重点内容,所以我紧接着给出了下面的填空练习:方程焦点准线范围对称轴离心率F(-1,0)y=4x2y2+ax=0(a0) 这个练习,意在教会学生:已知焦点,如何完成由形到数的回归,给出方程不标准时,要有化归标准方程的意识以及由特殊到一般,对于方程中字母的含义要理解深刻。在小试身手之后,学生可能对抛物线四种形式标准方程的几何性质仍然感到难以辨别,我便把自己总结的口诀展示给学生,然后由学生之口说出理解,并及时对其发言进行点评,让学生牢牢把握方程与图形间的对应关系,再一次巩固了本节课的重点。在圆锥曲线学习中,要尽量突出各部分的内在联系,注意三种曲线之间的区别。因此我又设计了探究三:椭圆、双曲线、抛物线的几何性质有何异同? 对比椭圆、双曲线的几何性质,让学生总结抛物线几何性质的特征:一个焦点,一条准线,一个顶点,一条对称轴,离心率为1。学生对于抛物线离心率为1,会有疑问,这时可以引导学生课下思考第64页探索与研究部分内容,将学习引申到课外。 至此,通过三个探究问题,循序渐进,层层深入,使学生感受“作形判数”“就数论形”间的相互转化,完成了对抛物线几何性质由定性到定量的认识飞跃。 学以致用是数学教学的一个基本原则,也是本节课的难点。因此进入环节三、学以致用,拓展思维: 首先让学生利用抛物线的几何性质解决例1中的问题,使整个课堂前后呼应,浑然一体。此题的关键在于能否建立适当的坐标系,将实际问题转化为数学模型。我采用小组讨论、代表发言、点评完善的活动形式,在生生互动中解决问题。由于已有抛物线的认知基础,学生会认为这道题中对抛物线对称性的应用是以往知识的重复,还未能认识到抛物线几何性质在应用中的重要性,同时也为了体现范围这一性质的应用,我选取了如下问题作为例2: 例2:已知P为抛物线 上的点,A(2,0),B(4,0),求的最小值 。 这道题目通过独立作答,难点突破,点拨反思的活动形式完成。预想学生作答中的困难可能有:向量运算坐标化;几何问题代数化,能否将其转化为二次函数求最值问题;以及是否注意到抛物线范围的应用。其中最后一点是设计此例题的主要目的,也是学生的易错点。教学中,我让学生静下心来独立思考,独立发言,相互更正,将评判权交给学生,通过错题的辨析,纠错的警醒,学生在“疑”中提高思考质量,在“改”中加深认识,在生生互动、师生互动中突破难点。环节四、归纳小结,巩固落实:为了检验学生是否学会、会学,对课堂教学进行及时反馈,我设计了三道当堂练习题:(课件展示) 1、求下列方程表示的抛物线的焦点坐标和准线方程。 1)(口答) 2) 3) 第一题通过直接应用、变形转化、灵活处理三个层次的小题,使学生掌握抛物线的几何性质。 2、已知抛物线 和点 ,点在此抛物线上运动,求点与点 的 距离的最小值,并指出此时点的坐标。 第二题的设计的目的在于使学生掌握抛物线范围的应用,同时这是课本66页第3题的特例,为学生在作业中完成将A点坐标字母化、一般化的变式做铺垫。 3、已知正三角形的顶点在抛物线 上 ,是坐标原点,求 的面积。第三题源自课本练习,是抛物线对称性的应用。之后,我采用提问、小结的活动形式,让学生用自己的语言从知识与方法两个方面对课堂内容进行小结,加深对所学知识的内化和掌握。引用华罗庚先生的名句,提高数学课堂的思想品位,渗透数形结合思想。环节五、布置作业,课下探究: 为巩固所学,根据不同学生在数学中获得不同发展的原则,我设计了必做与选做两个层次的作业:(课件展示)必做:课本:P64,B 1,3选做:1、P64 B2 (探究焦点弦性质); 2、查阅资料,了解抛物线的光学性质及在生活中的应用。 本节课我的板书与椭圆、双曲线几何性质的板书结构一致,增加学生对类比的感性认识。 抛物线的几何性质 应用:1、 范围: 例2:(学生板书) 例3: 2、 对称轴: 3、 顶点:4、 离心率: 最后我再说一下本节课整体设计理念:五、 设计理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论