阳西县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
阳西县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
阳西县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
阳西县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
阳西县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

阳西县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 命题“若ab,则a8b8”的逆否命题是( )A若ab,则a8b8B若a8b8,则abC若ab,则a8b8D若a8b8,则ab2 已知在数轴上0和3之间任取一实数,则使“”的概率为( )A B C D3 下列结论正确的是( )A若直线l平面,直线l平面,则B若直线l平面,直线l平面,则C若直线l1,l2与平面所成的角相等,则l1l2D若直线l上两个不同的点A,B到平面的距离相等,则l4 已知x,y满足,且目标函数z=2x+y的最小值为1,则实数a的值是( )A1BCD5 已知函数f(x)=31+|x|,则使得f(x)f(2x1)成立的x的取值范围是( )ABC(,)D6 为了得到函数的图象,只需把函数y=sin3x的图象( )A向右平移个单位长度B向左平移个单位长度C向右平移个单位长度D向左平移个单位长度7 已知函数f(x)=,则f(f(1)=( )ABCD28 设集合A=x|2x4,B=2,1,2,4,则AB=( )A1,2B1,4C1,2D2,49 已知点是双曲线C:左支上一点,是双曲线的左、右两个焦点,且,与两条渐近线相交于,两点(如图),点恰好平分线段,则双曲线的离心率是( )A. B.2 C. D.【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.10“方程+=1表示椭圆”是“3m5”的( )条件A必要不充分B充要C充分不必要D不充分不必要11一个几何体的三视图如图所示,则该几何体的体积为( )ABCD12垂直于同一条直线的两条直线一定( )A平行B相交C异面D以上都有可能二、填空题13在等差数列中,其前项和为,若,则的值等于 .【命题意图】本题考查等差数列的通项公式、前项和公式,对等差数列性质也有较高要求,属于中等难度.14已知函数f(x)是定义在R上的单调函数,且满足对任意的实数x都有ff(x)2x=6,则f(x)+f(x)的最小值等于15曲线y=x+ex在点A(0,1)处的切线方程是16已知函数f(x)=,点O为坐标原点,点An(n,f(n)(nN+),向量=(0,1),n是向量与i的夹角,则+=17复数z=(i虚数单位)在复平面上对应的点到原点的距离为18已知点A的坐标为(1,0),点B是圆心为C的圆(x1)2+y2=16上一动点,线段AB的垂直平分线交BC与点M,则动点M的轨迹方程为 三、解答题19已知圆的极坐标方程为24cos()+6=0(1)将极坐标方程化为普通方程;(2)若点P在该圆上,求线段OP的最大值和最小值 20若f(x)是定义在(0,+)上的增函数,且对一切x,y0,满足f()=f(x)f(y)(1)求f(1)的值,(2)若f(6)=1,解不等式f(x+3)f()221如图,在四棱锥PABCD中,底面ABCD为等腰梯形,ADBC,PA=AB=BC=CD=2,PD=2,PAPD,Q为PD的中点()证明:CQ平面PAB;()若平面PAD底面ABCD,求直线PD与平面AQC所成角的正弦值22设圆C满足三个条件过原点;圆心在y=x上;截y轴所得的弦长为4,求圆C的方程23(本题12分)已知数列的首项,通项(,为常数),且成等差数列,求:(1)的值;(2)数列前项和的公式.24(本题满分13分)已知圆的圆心在坐标原点,且与直线:相切,设点为圆上一动点,轴于点,且动点满足,设动点的轨迹为曲线.(1)求曲线的方程;(2)若动直线:与曲线有且仅有一个公共点,过,两点分别作,垂足分别为,且记为点到直线的距离,为点到直线的距离,为点到点的距离,试探索是否存在最值?若存在,请求出最值.阳西县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】解:根据逆否命题和原命题之间的关系可得命题“若ab,则a8b8”的逆否命题是:若a8b8,则ab故选D【点评】本题主要考查逆否命题和原命题之间的关系,要求熟练掌握四种命题之间的关系比较基础2 【答案】C【解析】试题分析:由得,由几何概型可得所求概率为.故本题答案选C.考点:几何概型3 【答案】B【解析】解:A选项中,两个平面可以相交,l与交线平行即可,故不正确;B选项中,垂直于同一平面的两个平面平行,正确;C选项中,直线与直线相交、平行、异面都有可能,故不正确;D中选项也可能相交故选:B【点评】本题考查平面与平面,直线与直线,直线与平面的位置关系,考查学生分析解决问题的能力,比较基础4 【答案】B【解析】解:由约束条件作出可行域如图,由图可知A(a,a),化目标函数z=2x+y为y=2x+z,由图可知,当直线y=2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解得:a=故选:B【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题5 【答案】A【解析】解:函数f(x)=31+|x|为偶函数,当x0时,f(x)=31+x此时y=31+x为增函数,y=为减函数,当x0时,f(x)为增函数,则当x0时,f(x)为减函数,f(x)f(2x1),|x|2x1|,x2(2x1)2,解得:x,故选:A【点评】本题考查的知识点是分段函数的应用,函数的奇偶性,函数的单调性,难度中档6 【答案】A【解析】解:把函数y=sin3x的图象向右平移个单位长度,可得y=sin3(x)=sin(3x)的图象,故选:A【点评】本题主要考查函数y=Asin(x+)的图象变换规律,属于基础题7 【答案】D【解析】解:函数f(x)=,则f(1)=(1)2=1,f(f(1)=f(1)=21=2故选D【点评】本题考查分段函数和运用:求函数值,考查运算能力,属于基础题8 【答案】A【解析】解:集合A=x|2x4,B=2,1,2,4,则AB=1,2故选:A【点评】本题考查交集的运算法则的应用,是基础题9 【答案】A. 【解析】10【答案】C【解析】解:若方程+=1表示椭圆,则满足,即,即3m5且m1,此时3m5成立,即充分性成立,当m=1时,满足3m5,但此时方程+=1即为x2+y2=4为圆,不是椭圆,不满足条件即必要性不成立故“方程+=1表示椭圆”是“3m5”的充分不必要条件故选:C【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题11【答案】 B【解析】解:三视图复原的几何体是一个半圆锥和圆柱的组合体,它们的底面直径均为2,故底面半径为1,圆柱的高为1,半圆锥的高为2,故圆柱的体积为:121=,半圆锥的体积为:=,故该几何体的体积V=+=,故选:B12【答案】D【解析】解:分两种情况:在同一平面内,垂直于同一条直线的两条直线平行;在空间内垂直于同一条直线的两条直线可以平行、相交或异面故选D【点评】本题主要考查在空间内两条直线的位置关系二、填空题13【答案】14【答案】6 【解析】解:根据题意可知:f(x)2x是一个固定的数,记为a,则f(a)=6,f(x)2x=a,即f(x)=a+2x,当x=a时,又a+2a=6,a=2,f(x)=2+2x,f(x)+f(x)=2+2x+2+2x=2x+2x+42+4=6,当且仅当x=0时成立,f(x)+f(x)的最小值等于6,故答案为:6【点评】本题考查函数的最值,考查运算求解能力,注意解题方法的积累,属于中档题15【答案】2xy+1=0 【解析】解:由题意得,y=(x+ex)=1+ex,点A(0,1)处的切线斜率k=1+e0=2,则点A(0,1)处的切线方程是y1=2x,即2xy+1=0,故答案为:2xy+1=0【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题16【答案】 【解析】解:点An(n,)(nN+),向量=(0,1),n是向量与i的夹角,=, =, =,+=+=1=,故答案为:【点评】本题考查了向量的夹角、数列“裂项求和”方法,考查了推理能力与计算能力,属于中档题17【答案】 【解析】解:复数z=i(1+i)=1i,复数z=(i虚数单位)在复平面上对应的点(1,1)到原点的距离为:故答案为:【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力18【答案】=1【解析】解:由题意得,圆心C(1,0),半径等于4,连接MA,则|MA|=|MB|,|MC|+|MA|=|MC|+|MB|=|BC|=4|AC|=2,故点M的轨迹是:以A、C为焦点的椭圆,2a=4,即有a=2,c=1,b=,椭圆的方程为=1故答案为: =1【点评】本题考查用定义法求点的轨迹方程,考查学生转化问题的能力,属于中档题三、解答题19【答案】 【解析】解:(1)24cos()+6=0,展开为:24(cos+sin)+6=0化为:x2+y24x4y+6=0(2)由x2+y24x4y+6=0可得:(x2)2+(y2)2=2圆心C(2,2),半径r=|OP|=2线段OP的最大值为2+=3最小值为2= 20【答案】 【解析】解:(1)在f()=f(x)f(y)中,令x=y=1,则有f(1)=f(1)f(1),f(1)=0;(2)f(6)=1,2=1+1=f(6)+f(6),不等式f(x+3)f()2等价为不等式f(x+3)f()f(6)+f(6),f(3x+9)f(6)f(6),即f()f(6),f(x)是(0,+)上的增函数,解得3x9,即不等式的解集为(3,9)21【答案】 【解析】()证明:取PA的中点N,连接QN,BNQ,N是PD,PA的中点,QNAD,且QN=ADPA=2,PD=2,PAPD,AD=4,BC=AD又BCAD,QNBC,且QN=BC,四边形BCQN为平行四边形,BNCQ又BN平面PAB,且CQ平面PAB,CQ平面PAB()解:取AD的中点M,连接BM;取BM的中点O,连接BO、PO由()知PA=AM=PM=2,APM为等边三角形,POAM同理:BOAM平面PAD平面ABCD,平面PAD平面ABCD=AD,PO平面PAD,PO平面ABCD以O为坐标原点,分别以OB,OD,OP所在直线为x轴,y轴,z轴建立空间直角坐标系,则D(0,3,0),A(0,1,0),P(0,0,),C(,2,0),Q(0,)=(,3,0),=(0,3,),=(0,)设平面AQC的法向量为=(x,y,z),令y=得=(3,5)cos,=直线PD与平面AQC所成角正弦值为22【答案】 【解析】解:根据题意画出图形,如图所示:当圆心C1在第一象限时,过C1作C1D垂直于x轴,C1B垂直于y轴,连接AC1,由C1在直线y=x上,得到C1B=C1D,则四边形OBC1D为正方形,与y轴截取的弦OA=4,OB=C1D=OD=C1B=2,即圆心C1(2,2),在直角三角形ABC1中,根据勾股定理得:AC1=2,则圆C1方程为:(x2)2+(y2)2=8;当圆心C2在第三象限时,过C2作C2D垂直于x轴,C2B垂直于y轴,连接AC2,由C2在直线y=x上,得到C2B=C2D,则四边形OBC2D为正方形,与y轴截取的弦OA=4,OB=C2D,=OD=C2B=2,即圆心C2(2,2),在直角三角形ABC2中,根据勾股定理得:AC2=2,则圆C1方程为:(x+2)2+(y+2)2=8,圆C的方程为:(x2)2+(y2)2=8或(x+2)2+(y+2)2=8【点评】本题考查了角平分线定理,垂径定理,正方形的性质及直角三角形的性质,做题时注意分两种情况,利用数形结合的思想,分别求出圆心坐标和半径,写出所有满足题意的圆的标准方程,是中档题23【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论