




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷沾化区实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知实数a,b,c满足不等式0abc1,且M=2a,N=5b,P=()c,则M、N、P的大小关系为( )AMNPBPMNCNPM2 直线l将圆x2+y22x+4y=0平分,且在两坐标轴上的截距相等,则直线l的方程是( )Axy+1=0,2xy=0Bxy1=0,x2y=0Cx+y+1=0,2x+y=0Dxy+1=0,x+2y=03 函数存在与直线平行的切线,则实数的取值范围是( )A. B. C. D. 【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力4 如图,该程序运行后输出的结果为( )A7B15C31D635 某企业为了监控产品质量,从产品流转均匀的生产线上每间隔10分钟抽取一个样本进行检测,这种抽样方法是( )A抽签法B随机数表法C系统抽样法D分层抽样法6 已知集合,则( )A B C D【命题意图】本题考查集合的交集运算,意在考查计算能力7 下列命题正确的是( )A很小的实数可以构成集合.B集合与集合是同一个集合.C自然数集 中最小的数是.D空集是任何集合的子集.8 函数f(x)=sinx(0)在恰有11个零点,则的取值范围( )ACD时,函数f(x)的最大值与最小值的和为( )Aa+3B6C2D3a9 已知两条直线ax+y2=0和3x+(a+2)y+1=0互相平行,则实数a等于( )A1或3B1或3C1或3D1或310以下四个命题中,真命题的是( )A,B“对任意的,”的否定是“存在,C,函数都不是偶函数D中,“”是“”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力11双曲线=1(mZ)的离心率为( )AB2CD312下列式子表示正确的是( )A、 B、 C、 D、二、填空题13已知(1+x+x2)(x)n(nN+)的展开式中没有常数项,且2n8,则n=14【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且对恒成立,则的取值范围是_.15一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是16已知,与的夹角为,则 17若函数f(x)=m在x=1处取得极值,则实数m的值是18已知函数的一条对称轴方程为,则函数的最大值为_【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想三、解答题19已知三次函数f(x)的导函数f(x)=3x23ax,f(0)=b,a、b为实数(1)若曲线y=f(x)在点(a+1,f(a+1)处切线的斜率为12,求a的值;(2)若f(x)在区间1,1上的最小值、最大值分别为2、1,且1a2,求函数f(x)的解析式20如图,在四边形ABCD中,DAB=90,ADC=135,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积21已知p:2x23x+10,q:x2(2a+1)x+a(a+1)0(1)若a=,且pq为真,求实数x的取值范围(2)若p是q的充分不必要条件,求实数a的取值范围22某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:40,50),50,60),90,100)后得到如图的频率分布直方图()求图中实数a的值;()根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;()若从样本中数学成绩在40,50)与90,100两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率23已知和均为给定的大于1的自然数,设集合,.,集合.。,.,.(1)当,时,用列举法表示集合;(2)设、,.。,.。,其中、,.,.证明:若,则.24已知函数f(x)=lnxa(1),aR()求f(x)的单调区间;()若f(x)的最小值为0(i)求实数a的值;(ii)已知数列an满足:a1=1,an+1=f(an)+2,记x表示不大于x的最大整数,求证:n1时an=2 沾化区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:0abc1,12a2,5b1,()c1,5b=()b()c()c,即MNP,故选:A【点评】本题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键2 【答案】C【解析】解:圆x2+y22x+4y=0化为:圆(x1)2+(y+2)2=5,圆的圆心坐标(1,2),半径为,直线l将圆x2+y22x+4y=0平分,且在两坐标轴上的截距相等,则直线l经过圆心与坐标原点或者直线经过圆心,直线的斜率为1,直线l的方程是:y+2=(x1),2x+y=0,即x+y+1=0,2x+y=0故选:C【点评】本题考查直线与圆的位置关系,直线的截距式方程的求法,考查计算能力,是基础题3 【答案】D【解析】因为,直线的的斜率为,由题意知方程()有解,因为,所以,故选D4 【答案】如图,该程序运行后输出的结果为( )D【解析】解:因为A=1,s=1判断框内的条件15成立,执行s=21+1=3,i=1+1=2;判断框内的条件25成立,执行s=23+1=7,i=2+1=3;判断框内的条件35成立,执行s=27+1=15,i=3+1=4;判断框内的条件45成立,执行s=215+1=31,i=4+1=5;判断框内的条件55成立,执行s=231+1=63,i=5+1=6;此时65,判断框内的条件不成立,应执行否路径输出63,所以输入的m值应是5故答案为5【点评】本题考查了程序框图中的当型循环结构,当型循环是先判断后执行,满足条件进入循环,不满足条件,算法结束5 【答案】C【解析】解:由题意知,这个抽样是在传送带上每隔10分钟抽取一产品,是一个具有相同间隔的抽样,并且总体的个数比较多,是系统抽样法,故选:C【点评】本题考查了系统抽样抽样方法有简单随机抽样、系统抽样、分层抽样,抽样选用哪一种抽样形式,要根据题目所给的总体情况来决定,若总体个数较少,可采用抽签法,若总体个数较多且个体各部分差异不大,可采用系统抽样,若总体的个体差异较大,可采用分层抽样属于基础题6 【答案】C【解析】当时,所以,故选C7 【答案】D【解析】试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项D是正确,故选D.考点:集合的概念;子集的概念.8 【答案】A【解析】ACD恰有11个零点,可得56,求得1012,故选:A9 【答案】A【解析】解:两条直线ax+y2=0和3x+(a+2)y+1=0互相平行,所以=,解得 a=3,或a=1故选:A10【答案】D11【答案】B【解析】解:由题意,m240且m0,mZ,m=1双曲线的方程是y2x2=1a2=1,b2=3,c2=a2+b2=4a=1,c=2,离心率为e=2故选:B【点评】本题的考点是双曲线的简单性质,考查由双曲线的方程求三参数,考查双曲线中三参数的关系:c2=a2+b212【答案】D【解析】试题分析:空集是任意集合的子集。故选D。考点:1.元素与集合的关系;2.集合与集合的关系。二、填空题13【答案】5【解析】二项式定理【专题】计算题【分析】要想使已知展开式中没有常数项,需(x)n(nN+)的展开式中无常数项、x1项、x2项,利用(x)n(nN+)的通项公式讨论即可【解答】解:设(x)n(nN+)的展开式的通项为Tr+1,则Tr+1=xnrx3r=xn4r,2n8,当n=2时,若r=0,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n2;当n=3时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n3;当n=4时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n4;当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(nN+)的展开式中均没有常数项,故n=5适合题意;当n=6时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n6;当n=7时,若r=2,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n7;当n=8时,若r=2,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n2;综上所述,n=5时,满足题意故答案为:5【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题14【答案】【解析】点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用。因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的。根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧。许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效。15【答案】2:1 【解析】解:设圆锥、圆柱的母线为l,底面半径为r,所以圆锥的侧面积为: =rl圆柱的侧面积为:2rl所以圆柱和圆锥的侧面积的比为:2:1故答案为:2:116【答案】【解析】解析:本题考查向量夹角与向量数量积的应用与的夹角为,17【答案】 2【解析】解:函数f(x)=m的导数为f(x)=mx2+2x,由函数f(x)=m在x=1处取得极值,即有f(1)=0,即m+2=0,解得m=2,即有f(x)=2x2+2x=2(x1)x,可得x=1处附近导数左正右负,为极大值点故答案为:2【点评】本题考查导数的运用:求极值,主要考查由极值点求参数的方法,属于基础题18【答案】1【解析】三、解答题19【答案】 【解析】解:(1)由导数的几何意义f(a+1)=123(a+1)23a(a+1)=123a=9a=3(2)f(x)=3x23ax,f(0)=b由f(x)=3x(xa)=0得x1=0,x2=ax1,1,1a2当x1,0)时,f(x)0,f(x)递增;当x(0,1时,f(x)0,f(x)递减f(x)在区间1,1上的最大值为f(0)f(0)=b,b=1,f(1)f(1)f(1)是函数f(x)的最小值,f(x)=x32x2+1【点评】曲线在切点处的导数值为曲线的切线斜率;求函数的最值,一定要注意导数为0的根与定义域的关系20【答案】 【解析】解:四边形ABCD绕AD旋转一周所成的几何体,如右图:S表面=S圆台下底面+S圆台侧面+S圆锥侧面=r22+(r1+r2)l2+r1l1=21【答案】 【解析】解:p:,q:axa+1;(1)若a=,则q:;pq为真,p,q都为真;,;实数x的取值范围为;(2)若p是q的充分不必要条件,即由p能得到q,而由q得不到p;,;实数a的取值范围为【点评】考查解一元二次不等式,pq真假和p,q真假的关系,以及充分不必要条件的概念22【答案】 【解析】解:()由频率分布直方图,得:10(0.005+0.01+0.025+a+0.01)=1,解得a=0.03()由频率分布直方图得到平均分:=0.0545+0.155+0.265+0.375+0.2585+0.195=74(分)()由频率分布直方图,得数学成绩在40,50)内的学生人数为400.05=2,这两人分别记为A,B,数学成绩在90,100)内的学生人数为400.1=4,这4人分别记为C,D,E,F,若从数学成绩在40,50)与90,100)两个分数段内的学生中随机选取2名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个,如果这两名学生的数学成绩都在40,50)或都在90,100)内,则这两名学生的数学成绩之差的绝对值不大于10,记“这两名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,所以这两名学生的数学成绩之差的绝对值不大于10的概率P=【点评】本题考查频率和概率的求法,二查平均分的求法,是中档题,解题时要认真审题,注意频率分布直方图和列举法的合理运用23【答案】【解析】24【答案】 【解析】解:()函数f(x)的定义域为(0,+),且f(x)=当a0时,f(x)0,所以f(x)在区间(0,+)内单调递增;当a0时,由f(x)0,解得xa;由f(x)0,解得0xa所以f(x)的单调递增区间为(a,+),单调递减区间为(0,a)综上述:a0时,f(x)的单调递增区间是(0,+);a0时,f(x)的单调递减区间是(0,a),单调递增区间是(a,+)()()由()知,当a0时,f(x)无最小值,不合题意;当a0时,f(x)min=f(a)=1a+lna=0,令g(x)=1x+lnx(x0),则g(x)=1+=,由g(x)0,解得0x1;由g(x)0,解得x1所以g(x)的单调递增区间为(0,1),单调递减区间为(1,+)故g(x)max=g(1)=0,即当且仅当x=1时,g(x)=0因此,a=1()因为f(x)=lnx1+,所以an+1=f(an)+2=1+lnan由a1=1得a2=2于是a3=+ln2因为ln21,所以2a3猜想当n3,nN时,2an下面用数学归纳法进行证明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商州安全员考及答案
- 2025年康复医疗服务体系建设与康复康复护理服务市场分析报告
- 泰安龙潭小学施工方案
- 2025年西安中招英语真题及答案
- 骨科专业面试题目及答案
- DB65T 4348.5-2021 草地退化状况评价技术规范 第5部分:高寒草甸类
- 4 写生身边的风景说课稿-2025-2026学年小学美术沪教版四年级上册-沪教版
- DB65T 4480-2021 电梯困人应急处置导则
- 迪吧消防应急预案(3篇)
- 2025年质量综合知识题库及答案
- 2025至2030年中国猫砂行业发展监测及投资战略研究报告
- 2025年理赔人员上岗考试题库
- 2025年AI技术在项目管理中的应用洞察报告
- 荧光分析技术第二章荧光信号机制讲课文档
- 2025-2026年秋季学期各周国旗下讲话安排表+2025-2026学年上学期升旗仪式演讲主题安排表
- 2025年公务员(国考)之公共基础知识考试题库(带答案解析)
- 初级医学影像技术师考试试卷及答案2025年
- 幼儿园一日生活指引培训
- 中班健康运蔬菜喽
- 脑疝的观察与护理
- 2025年护理核心制度试题及答案
评论
0/150
提交评论