




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷袁州区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 ()0(10.52)的值为( )ABCD2 已知函数f(x)=x22x+3在0,a上有最大值3,最小值2,则a的取值范围( )A1,+)B0.2C1,2D(,23 设a是函数x的零点,若x0a,则f(x0)的值满足( )Af(x0)=0Bf(x0)0Cf(x0)0Df(x0)的符号不确定4 sin570的值是( )ABCD5 f()=,则f(2)=( )A3B1C2D6 抛物线y=8x2的准线方程是( )Ay=By=2Cx=Dy=27 函数f(x)=xsinx的图象大致是( )ABC D8 函数f(x)=3x+x3的零点所在的区间是( )A(0,1)B(1,2)C(2.3)D(3,4)9 将y=cos(2x+)的图象沿x轴向右平移个单位后,得到一个奇函数的图象,则的一个可能值为( )ABCD10与向量=(1,3,2)平行的一个向量的坐标是( )A(,1,1)B(1,3,2)C(,1)D(,3,2) 11设集合M=x|x1,P=x|x26x+9=0,则下列关系中正确的是( )AM=PBPMCMPDMP=R12设函数,则有( )Af(x)是奇函数,Bf(x)是奇函数, y=bxCf(x)是偶函数Df(x)是偶函数,二、填空题13椭圆+=1上的点到直线l:x2y12=0的最大距离为14在复平面内,复数与对应的点关于虚轴对称,且,则_15设等差数列an的前n项和为Sn,若1a31,0a63,则S9的取值范围是16过椭圆+=1(ab0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若F1PF2=60,则椭圆的离心率为17已知抛物线:的焦点为,点为抛物线上一点,且,双曲线:(,)的渐近线恰好过点,则双曲线的离心率为 .【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.18若全集,集合,则 。三、解答题19(本小题满分10分)选修4-4:坐标系与参数方程已知椭圆的极坐标方程为,点为其左、右焦点,直线的参数方程为(为参数,).(1)求直线和曲线的普通方程;(2)求点到直线的距离之和.20设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2(1)求a,b的值;(2)设函数g(x)=f(x)2x+2,求g(x)在其定义域上的最值21如图,在RtABC中,ACB=,AC=3,BC=2,P是ABC内一点(1)若P是等腰三角形PBC的直角顶角,求PA的长;(2)若BPC=,设PCB=,求PBC的面积S()的解析式,并求S()的最大值22已知等比数列an中,a1=,公比q=()Sn为an的前n项和,证明:Sn=()设bn=log3a1+log3a2+log3an,求数列bn的通项公式23(本小题满分12分)已知函数.(1)当时,讨论函数在区间上零点的个数;(2)证明:当,时,.24已知函数y=x+有如下性质:如果常数t0,那么该函数在(0,上是减函数,在,+)上是增函数(1)已知函数f(x)=x+,x1,3,利用上述性质,求函数f(x)的单调区间和值域;(2)已知函数g(x)=和函数h(x)=x2a,若对任意x10,1,总存在x20,1,使得h(x2)=g(x1)成立,求实数a的值 袁州区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:原式=1(1)=1(1)=1(14)=1(3)=1+=故选:D【点评】本题考查了根式与分数指数幂的运算问题,解题时应细心计算,是易错题2 【答案】C【解析】解:f(x)=x22x+3=(x1)2+2,对称轴为x=1所以当x=1时,函数的最小值为2当x=0时,f(0)=3由f(x)=3得x22x+3=3,即x22x=0,解得x=0或x=2要使函数f(x)=x22x+3在0,a上有最大值3,最小值2,则1a2故选C【点评】本题主要考查二次函数的图象和性质,利用配方法是解决二次 函数的基本方法3 【答案】C【解析】解:作出y=2x和y=logx的函数图象,如图:由图象可知当x0a时,2logx0,f(x0)=2logx00故选:C4 【答案】B【解析】解:原式=sin(720150)=sin150=故选B【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键5 【答案】A【解析】解:f()=,f(2)=f()=3故选:A6 【答案】A【解析】解:整理抛物线方程得x2=y,p=抛物线方程开口向下,准线方程是y=,故选:A【点评】本题主要考查抛物线的基本性质解决抛物线的题目时,一定要先判断焦点所在位置7 【答案】A【解析】解:函数f(x)=xsinx满足f(x)=xsin(x)=xsinx=f(x),函数的偶函数,排除B、C,因为x(,2)时,sinx0,此时f(x)0,所以排除D,故选:A【点评】本题考查函数的图象的判断,函数的奇偶性以及函数值的应用,考查分析问题解决问题的能力8 【答案】A【解析】解:f(0)=20,f(1)=10,由零点存在性定理可知函数f(x)=3x+x3的零点所在的区间是(0,1)故选A【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题9 【答案】D【解析】解:将y=cos(2x+)的图象沿x轴向右平移个单位后,得到一个奇函数y=cos=cos(2x+)的图象,=k+,即 =k+,kZ,则的一个可能值为,故选:D10【答案】C【解析】解:对于C中的向量:(,1)=(1,3,2)=,因此与向量=(1,3,2)平行的一个向量的坐标是故选:C【点评】本题考查了向量共线定理的应用,属于基础题11【答案】B【解析】解:P=x|x=3,M=x|x1;PM故选B12【答案】C【解析】解:函数f(x)的定义域为R,关于原点对称又f(x)=f(x),所以f(x)为偶函数而f()=f(x),故选C【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法二、填空题13【答案】4 【解析】解:由题意,设P(4cos,2sin)则P到直线的距离为d=,当sin()=1时,d取得最大值为4,故答案为:414【答案】-2【解析】【知识点】复数乘除和乘方【试题解析】由题知:所以故答案为:-215【答案】(3,21) 【解析】解:数列an是等差数列,S9=9a1+36d=x(a1+2d)+y(a1+5d)=(x+y)a1+(2x+5y)d,由待定系数法可得,解得x=3,y=633a33,06a618,两式相加即得3S921S9的取值范围是(3,21)故答案为:(3,21)【点评】本题考查了等差数列的通项公式和前n项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题16【答案】 【解析】解:由题意知点P的坐标为(c,)或(c,),F1PF2=60,=,即2ac=b2=(a2c2)e2+2e=0,e=或e=(舍去)故答案为:【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题17【答案】18【答案】|01【解析】,|01。三、解答题19【答案】(1)直线的普通方程为,曲线的普通方程为;(2)【解析】试题分析:(1)由公式可化极坐标方程为直角坐标方程,利用消参法可化参数方程为普通方程;考点:极坐标方程与直角坐标方程的互化,参数方程与普通方程的互化,点到直线的距离公式20【答案】 【解析】解:(1)f(x)=x+ax2+blnx的导数f(x)=1+2a+(x0),由题意可得f(1)=1+a=0,f(1)=1+2a+b=2,得;(2)证明:f(x)=xx2+3lnx,g(x)=f(x)2x+2=3lnxx2x+2(x0),g(x)=2x1=,x(0,1)1(1,+)g(x)+0g(x)极大值g(x)在(0,1)递增,在(1,+)递减,可得g(x)max=g(1)=11+2=0,无最小值21【答案】 【解析】解:(1)P为等腰直角三角形PBC的直角顶点,且BC=2,PCB=,PC=,ACB=,ACP=,在PAC中,由余弦定理得:PA2=AC2+PC22ACPCcos=5,整理得:PA=;(2)在PBC中,BPC=,PCB=,PBC=,由正弦定理得: =,PB=sin,PC=sin(),PBC的面积S()=PBPCsin=sin()sin=sin(2+),(0,),则当=时,PBC面积的最大值为【点评】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键22【答案】 【解析】证明:(I)数列an为等比数列,a1=,q=an=,Sn=又=SnSn=(II)an=bn=log3a1+log3a2+log3an=log33+(2log33)+(nlog33)=(1+2+n)=数列bn的通项公式为:bn=【点评】本题主要考查等比数列的通项公式、前n项和以及对数函数的运算性质23【答案】(1)当时,有个公共点,当时,有个公共点,当时,有个公共点;(2)证明见解析.【解析】试题分析:(1)零点的个数就是对应方程根的个数,分离变量可得,构造函数,利用求出单调性可知在的最小值,根据原函数的单调性可讨论得零点个数;(2)构造函数,利用导数可判断的单调性和极值情况,可证明.1试题解析:当时,有0个公共点;当,有1个公共点;当有2个公共点.(2)证明:设,则,令,则,因为,所以,当时,;在上是减函数,当时,在上是增函数,考点:1.函数的极值;2.函数的单调性与导数的关系;3.不等式;4.函数的零点.【方法点睛】本题主要考查函数的极值,函数的单调性与导数的关系,不等式,函数的零点.有关零点问题一类题型是直接求零点,另一类是确定零点的个数.确定函数零点的常用方法:(1)解方程判定法,若方程易求解时用此法;(2)零点存在的判定定理法,常常要结合函数的性质,导数等知识;(3)数形结合法.在研究函数零点,方程的根及图象交点的问题时,当从正面求解难以入手,可以转化为某一个易入手的等价问题求解,如求解含绝对值,分式,三角式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.24【答案】 【解析】解:(1)由已知可以知道,函数f(x)在x1,2上单调递减,在x2,3上单调递增,f(x)min=f(2)=2+2=4,又f(1)=1+4=5,f(3)=3+=;f(1)f(3)所以f(x)max=f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 舞蹈面试必 备:中国舞面试题目及答案全解析
- 知识题库-物业管理师考试题目及答案(填空题、单选题)
- 山西省大同四中联盟体2026届化学高一第一学期期末监测试题含解析
- 你的名字讲解版
- 天然药物化学萜类
- 湖北省襄阳市第四中学2026届化学高一上期中综合测试模拟试题含解析
- 氧气放散率讲解
- 市场营销消费者行为分析讲解
- 膝关节结核讲解
- 三级中医医院评审汇报
- 2025年(完整版)十八项核心制度培训考核试题(含答案)
- 社工的劳动合同范本(2025版)
- 2025年中国LCP料数据监测报告
- 纺织服装产业园项目建设方案
- DB44T 1597-2015 电镀水污染物排放标准
- 儿童保健工作管理办法
- 全固态高功率超快激光器:放大机制与热透镜效应的深度剖析
- KET教学课件新版
- DGTJ08-2232-2017 城市轨道交通工程技术规范
- 中职思政试题及答案
- 中小学暑期安全教育班会课件
评论
0/150
提交评论