




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷永昌县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知f(x)=ax3+bx+1(ab0),若f(2016)=k,则f(2016)=( )AkBkC1kD2k2 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )ABCD3 如图,在平面直角坐标系中,锐角、及角+的终边分别与单位圆O交于A,B,C三点分别作AA、BB、CC垂直于x轴,若以|AA|、|BB|、|CC|为三边长构造三角形,则此三角形的外接圆面积为( )ABCD4 已知P(x,y)为区域内的任意一点,当该区域的面积为4时,z=2xy的最大值是( )A6B0C2D25 在中,内角,所对的边分别是,已知,则( )A B C. D6 某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如表几组样本数据:x3456y2.5344.5据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为0.7,则这组样本数据的回归直线方程是( )A =0.7x+0.35B =0.7x+1C =0.7x+2.05D =0.7x+0.45 7 已知,其中i为虚数单位,则a+b=( )A1B1C2D38 在中,那么一定是( )A锐角三角形 B直角三角形 C等腰三角形 D等腰三角形或直角三角形9 设数集M=x|mxm+,N=x|nxn,P=x|0x1,且M,N都是集合P的子集,如果把ba叫做集合x|axb的“长度”,那么集合MN的“长度”的最小值是( )ABCD10已知x,yR,且,则存在R,使得xcos+ysin+1=0成立的P(x,y)构成的区域面积为( )A4B4CD +11数列an的首项a1=1,an+1=an+2n,则a5=( )AB20C21D3112已知=(2,3,1),=(4,2,x),且,则实数x的值是( )A2B2CD二、填空题13设复数z满足z(23i)=6+4i(i为虚数单位),则z的模为14设满足约束条件,则的最大值是_15已知过双曲线的右焦点的直线交双曲线于两点,连结,若,且,则双曲线的离心率为( )A B C D【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想16将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为17等差数列中,公差,则使前项和取得最大值的自然数是_.18如图是正方体的平面展开图,则在这个正方体中与平行;与是异面直线;与成角;与是异面直线以上四个命题中,正确命题的序号是 (写出所有你认为正确的命题)三、解答题19设f(x)=2x3+ax2+bx+1的导数为f(x),若函数y=f(x)的图象关于直线x=对称,且f(1)=0()求实数a,b的值()求函数f(x)的极值20已知函数f(x)=|x10|+|x20|,且满足f(x)10a+10(aR)的解集不是空集()求实数a的取值集合A()若bA,ab,求证aabbabba 21(本小题满分12分)ABC的三内角A,B,C的对边分别为a,b,c,已知ksin Bsin Asin C(k为正常数),a4c.(1)当k时,求cos B;(2)若ABC面积为,B60,求k的值22某运动员射击一次所得环数X的分布如下:X0678910P00.20.30.30.2现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为(I)求该运动员两次都命中7环的概率;()求的数学期望E23在20142015赛季CBA常规赛中,某篮球运动员在最近5场比赛中的投篮次数及投中次数如下表所示:2分球3分球第1场10投5中4投2中第2场13投5中5投2中第3场8投4中3投1中第4场9投5中3投0中第5场10投6中6投2中(1)分别求该运动员在这5场比赛中2分球的平均命中率和3分球的平均命中率;(2)视这5场比赛中2分球和3分球的平均命中率为相应的概率假设运动员在第6场比赛前一分钟分别获得1次2分球和1次3分球的投篮机会,该运动员在最后一分钟内得分分布列和数学期望24命题p:关于x的不等式x2+2ax+40对一切xR恒成立,q:函数f(x)=(32a)x是增函数若pq为真,pq为假求实数a的取值范围永昌县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:f(x)=ax3+bx+1(ab0),f(2016)=k,f(2016)=20163a+2016b+1=k,20163a+2016b=k1,f(2016)=20163a2016b+1=(k1)+1=2k故选:D【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用2 【答案】C【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为故选:C3 【答案】 A【解析】(本题满分为12分)解:由题意可得:|AA|=sin、|BB|=sin、|CC|=sin(+),设边长为sin(+)的所对的三角形内角为,则由余弦定理可得,cos=coscos=coscos=sinsincoscos=cos(+),(0,)+(0,)sin=sin(+)设外接圆的半径为R,则由正弦定理可得2R=1,R=,外接圆的面积S=R2=故选:A【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,正弦定理,圆的面积公式在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题4 【答案】A 解析:解:由作出可行域如图,由图可得A(a,a),B(a,a),由,得a=2A(2,2),化目标函数z=2xy为y=2xz,当y=2xz过A点时,z最大,等于22(2)=6故选:A5 【答案】A【解析】考点:正弦定理及二倍角公式.【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理,余弦定理, 实现边与角的互相转化.6 【答案】A【解析】解:设回归直线方程=0.7x+a,由样本数据可得, =4.5, =3.5因为回归直线经过点(,),所以3.5=0.74.5+a,解得a=0.35故选A【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键7 【答案】B【解析】解:由得a+2i=bi1,所以由复数相等的意义知a=1,b=2,所以a+b=1另解:由得ai+2=b+i(a,bR),则a=1,b=2,a+b=1故选B【点评】本题考查复数相等的意义、复数的基本运算,是基础题8 【答案】D【解析】试题分析:在中,化简得,解得,即,所以或,即或,所以三角形为等腰三角形或直角三角形,故选D考点:三角形形状的判定【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出,从而得到或是试题的一个难点,属于中档试题9 【答案】C【解析】解:集M=x|mxm+,N=x|nxn,P=x|0x1,且M,N都是集合P的子集,根据题意,M的长度为,N的长度为,当集合MN的长度的最小值时,M与N应分别在区间0,1的左右两端,故MN的长度的最小值是=故选:C10【答案】 A【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB,若存在R,使得xcos+ysin+1=0成立,则(cos+sin)=1,令sin=,则cos=,则方程等价为sin(+)=1,即sin(+)=,存在R,使得xcos+ysin+1=0成立,|1,即x2+y21,则对应的区域为单位圆的外部,由,解得,即B(2,2),A(4,0),则三角形OAB的面积S=4,直线y=x的倾斜角为,则AOB=,即扇形的面积为,则P(x,y)构成的区域面积为S=4,故选:A【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键综合性较强11【答案】C【解析】解:由an+1=an+2n,得an+1an=2n,又a1=1,a5=(a5a4)+(a4a3)+(a3a2)+(a2a1)+a1=2(4+3+2+1)+1=21故选:C【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题12【答案】A【解析】解: =(2,3,1),=(4,2,x),且,=0,86+x=0;x=2;故选A【点评】本题考查向量的数量积判断向量的共线与垂直,解题的关键是将垂直关系转化为两向量的内积为0,建立关于x的方程求出x的值二、填空题13【答案】2 【解析】解:复数z满足z(23i)=6+4i(i为虚数单位),z=,|z|=2,故答案为:2【点评】本题主要考查复数的模的定义,复数求模的方法,利用了两个复数商的模等于被除数的模除以除数的模,属于基础题14【答案】【解析】试题分析:画出可行域如下图所示,由图可知目标函数在点处取得最大值为.考点:线性规划15【答案】B【解析】16【答案】4+ 【解析】解:作出正四棱柱的对角面如图,底面边长为6,BC=,球O的半径为3,球O1 的半径为1,则,在RtOMO1中,OO1=4,=,正四棱柱容器的高的最小值为4+故答案为:4+【点评】本题考查球的体积和表面积,考查空间想象能力和思维能力,是中档题17【答案】或【解析】试题分析:因为,且,所以,所以,所以,所以,所以,所以取得最大值时的自然数是或考点:等差数列的性质【方法点晴】本题主要考查了等差数列的性质,其中解答中涉及到等差数列的通项公式以及数列的单调性等知识点的应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据数列的单调性,得出,所以是解答的关键,同时结论中自然数是或是结论的一个易错点18【答案】【解析】试题分析:把展开图复原成正方体,如图,由正方体的性质,可知:与是异面直线,所以是错误的;与是平行直线,所以是错误的;从图中连接,由于几何体是正方体,所以三角形为等边三角形,所以所成的角为,所以是正确的;与是异面直线,所以是正确的考点:空间中直线与直线的位置关系三、解答题19【答案】 【解析】解:()因f(x)=2x3+ax2+bx+1,故f(x)=6x2+2ax+b从而f(x)=6y=f(x)关于直线x=对称,从而由条件可知=,解得a=3又由于f(x)=0,即6+2a+b=0,解得b=12()由()知f(x)=2x3+3x212x+1f(x)=6x2+6x12=6(x1)(x+2)令f(x)=0,得x=1或x=2当x(,2)时,f(x)0,f(x)在(,2)上是增函数;当x(2,1)时,f(x)0,f(x)在(2,1)上是减函数;当x(1,+)时,f(x)0,f(x)在(1,+)上是增函数从而f(x)在x=2处取到极大值f(2)=21,在x=1处取到极小值f(1)=620【答案】 【解析】解(1)要使不等式|x10|+|x20|10a+10的解集不是空集,则(|x10|+|x20|)min10a+10,根据绝对值三角不等式得:|x10|+|x20|(x10)(x20)|=10,即(|x10|+|x20|)min=10,所以,1010a+10,解得a0,所以,实数a的取值集合为A=(0,+);(2)a,b(0,+)且ab,不妨设ab0,则ab0且1,则1恒成立,即1,所以,aabbab,将该不等式两边同时乘以abbb得,aabbabba,即证【点评】本题主要考查了绝对值三角不等式的应用和不等式的证明,涉及指数函数的性质,属于中档题21【答案】【解析】解:(1)sin Bsin Asin C,由正弦定理得bac,又a4c,b5c,即b4c,由余弦定理得cos B.(2)SABC,B60.acsin B.即ac4.又a4c,a4,c1.由余弦定理得b2a2c22accos B421224113.b,ksin Bsin Asin C,由正弦定理得k,即k的值为.22【答案】 【解析】解:(1)设A=“该运动员两次都命中7环”,则P(A)=0.20.2=0.04(2)依题意在可能取值为:7、8、9、10且P(=7)=0.04,P(=8)=20.20.3+0.32=0.21,P(=9)=20.20.3+20.30.30.32=0.39,P(=10)=20.20.2+20.30.2+20.30.2+0.22=0.36,的分布列为:78910P0.040.210.390.36的期望为E=70.04+80.21+90.39+100.36=9.07【点评】本题考查概率的求法,考查离散型随机变量的数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用23【答案】 【解析】解:(1)该运动员在这5场比赛中2分球的平均命中率为:=,3分球的命中率为: =(2)依题意,该运动员投一次2分球命中的概率和投一次3分球命中的概率分别为,的可能取值为0,2,3,5,P(=0)=(1)(1)=,P(=2)=,P(=3)=(1)=,P(=5)=,该运动员在最后1分钟内得分的分布
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗机构患者隐私及信息保密协议书范本
- 旗杆采购及户外照明及广告发布合同
- 2025合同范本广告制作委托合同示例
- 2025未签订劳动合同证明
- 2025专业版抵押借款合同范本
- 2025年水电站报废改建工程机电设备更新改造项目招标合同商务条款
- 线练学校高三英语第一次模拟考试卷 (三)
- 基于多传感信息融合的隧道掌子面炮孔检测与定位方法研究
- 财务稳健性测试题及答案
- 健康有趣小测试题及答案
- 我国服饰文化及地理环境关系研究报告
- 鱼类学-鲻形目ppt课件教学教程
- 幼儿园课件:《铅笔不能咬》
- 没有斑马线的马路课件
- 高三物理一轮复习教学案追击和相遇问题
- 如何做好一名优秀的企业管理者
- 完整word版医院信息管理系统测试报告
- 新版医疗器械随货同行单模版(共1页)
- 宁波奉化区国有企业融资及对外担保治理暂行办法
- 导杆式柴油打桩锤使用说明书15p
- 【最新】八年级物理《熔化和凝固》 人教新课标版
评论
0/150
提交评论