列方程解决简单的实际问题.doc_第1页
列方程解决简单的实际问题.doc_第2页
列方程解决简单的实际问题.doc_第3页
列方程解决简单的实际问题.doc_第4页
列方程解决简单的实际问题.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

列方程解决简单的实际问题教学反思(周庄 虞慧)今天的教学内容是列方程解决简单的实际问题。这是学生第一次接触列方程解决实际问题。习惯了用算术法解决简单实际问题,要学生一下子转换思维用方程解,感觉很有难度。 本课教学时,除了介绍方程解题的步骤格式外,我还把侧重点放在了让学生找并说出题中的数量关系。但课上举手的同学寥寥无几,为了突破这一难点,在教学过程中我建议学生抓住题目中的关键语句,如“小刚比小军少0.06米”等说出题目中的数量关系,这种方法对于优等生确实有一定帮助,但对于学困生还是难似登天。课后在学生的作业中,我发现学生运用列方程解决简单实际问题存在两方面的问题:一是格式方面,有学生会忘记写解设,有学生在求出结果x=,后面会加单位,当然因为今天是第一次接触,这种格式上的问题经过几次提醒,学生肯定会改正过来。但如何来找等量关系这一问题就没有那么简单了,而这也是我在接下来的教学中需要探索、突破的地方。解方程的教学思考(姜广德)新教材的解方程教学与老教材的教学明显不同,老教材学生用四则运算各部分之间的关系和运算律来解方程,但是这种方法只能解比较简单的方程,并且与中学教材脱节,新教材从学生的长远发展出发,注重中小学教学的衔接,用等式的性质解方程。在备解方程这节课时,我想到学生在以前的学习中,已经知道了四则混合运算各部分之间的关系,也有了解答形如( )+8=12,( )6=18等题目的经验,学生应该很自然地想到用四则混合运算之间的关系来解方程。学生课堂上出现这种方法该怎样处理呢?记得上一次教五年级时是这样处理的?在教学例4,看图列出方程x+10=50后。师:怎样求出方程中未知数x的值呢?生:x=50-10师:你是怎样想的?生:我是根据一个加数等于和减另一个加数算的。师:这种方法是可以的。但是我们要用等式的性质来解决,你会吗?其他学生很快就想到了在等式的两边同时减去10,结果仍然是等式这种方法,我也顺利地进入了下一环节的教学。我觉得这个地方的处理不是太好。学生出现了利用四则运算各部分之间的关系解方程这种方法,我觉得不能该意回避。我想这两种方法不是对立的,也回避不掉。那么,能不能沟通两种方法之间的联系呢?本学期教学我是这样处理的:在教学例4,看图列出方程x+10=50后。师:怎样求出方程中未知数x的值呢?生:x=50-10师板书:x+10=50x=50-10师:你是怎样想的?生1:我是根据一个加数等于和减另一个加数算的。师:你真聪明,能利用以前学习的知识求出x的值。师:大家思考思考,能用等式的性质说明一下吗?生2:x+10=50,x=50-10就相当于方程的左边和右边同时减去了10。生3:也就是等式的两边同时减去一个加数。师:那么方程左边剩下了什么?(一个加数)右边变成了什么?(和减另一个加数)师:原来根据一个加数等于和减另一个加数,也是利用了等式的性质呀。 列方程解决简单实际问题,是在学生学习了利用等式的性质解简单方程的基础上,将实际问题抽象成方程的过程。 经过第一课时的教学后,我发现大部分学生对于列方程解决简单实际问题的过程,掌握地还不错,只有个别同学会在“解:设为X。”X的后面会忘记加单位名称;还有个别同学会在求出的结果X=,得数的后面反而又加了单位名称。我想格式上问题经过老师的几次提醒,个别同学会有所改正的。格式上的问题是比较好纠正的,然而理解上的问题就没有那么简单了。列方程解决实际问题的难点是:根据实际问题找出等量关系式,再列出方程。但是有些理解能力较弱的学生不知道怎样来找等量关系式。所以我在设计第二课时练习课的时候,我想先教会学生找出题目中等量关系式的本领和方法。 我小结出平时做的练习题中经常会出现的一些等量关系,如下:1、根据常用的数量关系确定等量关系。例如:甲乙两地相距1820千米,汽车每小时行130千米,求汽车从甲地到乙地需要多少小时?等量关系式:速度时间=路程。由此可以列出方程:解:设汽车从甲地到乙地需要X小时。X130=1820X=182013X=14答:汽车从甲地到乙地需要14小时。2、根据几何公式确定等量关系。例如:平行四边形的面积是11.2平方米,底是5.6米,它的高是多少米?等量关系式:底高=平行四边形的面积,根据这个公式列出方程。解:设平行四边形的高是X米。5.6X=11.2X=11.25.6X=2答:平行四边形的高是2米。3、根据题目中有比较意义的关键句确定等量关系。类似于这样的找等量关系的题目,是同学错的最多的题目,我让学生分两步做:第一,找出题目中有比较意义的关键句;第二,按照关键句中,文字表述的顺序列出等量关系式。例1:钢琴的黑键有36个,比白键少16个,白键有多少个?第一,找出有比较意义的关键句“比白键少16个”,第二,按照关键句中文字描述的顺序,“比白键少”,“ 少”就是“减”,用“白键的个数16个=黑键的个数”,再根据等量关系式列出方程。解:设白键有x个。x16=36x=36+16x=52答:白键有52个。例2:一只大象的体重是6吨,正好是一头牛体重的15倍。一头牛的体重是多少吨?第一,找出找出有比较意义关键句,“正好是一头牛体重的15倍”,第二,按照关键句中文字描述的顺序,“是一头牛体重的15倍”,看到“的几倍”,应该用乘法,“一头牛体重15=一只大象的体重”, 再根据等量关系式列出方程。解:设一头牛的体重是X吨。15X=6X=615X=0.4答:一头牛的体重是0.4吨。另外,还要注意的是,其实每道题目都可以列出三个等量关系式,要提醒学生注意,根据这三个等量关系式,可以列出三个方程,但是,其中有一种方程是X单独在“=”的左边或者单独在“=”的右边,这种情形要避免,因为,如果这样列方程就和算术解法差不多了,方程也就失去了它的意义。总之,列方程解实际问题只要找出数量间的相等关系,再列式就可以了,等量关系式变化很多,因此方法较多,从不同的角度找出不同的数量关系式,可以列出不同的方程。我觉得对于理解水平较弱的学生不能仅仅满足于用方程做出了这道题就可以了,而是要让学生真正认识到用方程解题的优势,选择适合自己的一种方法就可以了,并且要养成良好的检验习惯。本课是在学生认识了方程,学会解只含有一步计算的方程的基础上,学习列方程简单的实际问题。列方程不仅是解决问题的一种策略,更是一种十分重要的数学思想方法,所以本课的教学内容十分重要,对学生今后的学习也起着至关重要的作用。所以在教学时,我花费的时间也比较多,在一些关键环节用时用力都较多些。因此本课的教学内容实际是用两个课时完成的,当然在这其中我也进行了适当的拓展和延伸。在进行例7的教学时,我是从两个方面入手的:一是在教师的引导启发下,学生理解和掌握正确的列方程解决实际问题的方法:二是在教学的过程中向学生渗透一定的数学思想方法。相比较而言,前者是显性的,后者是隐性的。就重要性和意义而言,我觉得后者更重要一些。所以在教学例7时,我是结合列方程解决实际问题的基本步骤,逐个环节的引导学生理解和认识,从而使学生有一个比较清晰的认知结构。在此过程中引导学生体会出列方程是一种数学思想方法。我在教学中提出:你觉得列方程解决实际问题和用算术方法解决谁更容易些?学生的意见并不统一,我告诉他们在后面的练习中你可以带着这个问题去比较、体会。事实上,在两个课时结束后,学生在完成一定的练习后,意见基本统一了。但在本课的教学中学生普遍存在的问题是:找等量关系式有一定困难。关于这点,在后面的练习课中要作为重点解决。列方程解决简单实际问题,是在学生学习了利用等式的性质解简单方程的基础上,将实际问题抽象成方程的过程。经过第一课时的教学后,我发现大部分学生对于列方程解决简单实际问题的过程,掌握地还不错,只有个别同学会在“解:设为X。”X的后面会忘记加单位名称;还有个别同学会在求出的结果X=,得数的后面反而又加了单位名称。我想格式上问题经过老师的几次提醒,个别同学会有所改正的。格式上的问题是比较好纠正的,然而理解上的问题就没有那么简单了。列方程解决实际问题的难点是:根据实际问题找出等量关系式,再列出方程。但是有些理解能力较弱的学生不知道怎样来找等量关系式。所以我在设计第二课时练习课的时候,我想先教会学生找出题目中等量关系式的本领和方法。 我小结出平时做的练习题中经常会出现的一些等量关系,如下:1、根据常用的数量关系确定等量关系。例如:甲乙两地相距1820千米,汽车每小时行130千米,求汽车从甲地到乙地需要多少小时?等量关系式:速度时间=路程。由此可以列出方程:解:设汽车从甲地到乙地需要X小时。X130=1820X=182013X=14答:汽车从甲地到乙地需要14小时。2、根据几何公式确定等量关系。例如:平行四边形的面积是11.2平方米,底是5.6米,它的高是多少米?等量关系式:底高=平行四边形的面积,根据这个公式列出方程。解:设平行四边形的高是X米。5.6X=11.2X=11.25.6X=2答:平行四边形的高是2米。3、根据题目中有比较意义的关键句确定等量关系。类似于这样的找等量关系的题目,是同学错的最多的题目,我让学生分两步做:第一,找出题目中有比较意义的关键句;第二,按照关键句中,文字表述的顺序列出等量关系式。例1:钢琴的黑键有36个,比白键少16个,白键有多少个?第一,找出有比较意义的关键句“比白键少16个”,第二,按照关键句中文字描述的顺序,“比白键少”,“ 少”就是“减”,用“白键的个数16个=黑键的个数”,再根据等量关系式列出方程。解:设白键有x个。x16=36x=36+16x=52答:白键有52个。例2:一只大象的体重是6吨,正好是一头牛体重的15倍。一头牛的体重是多少吨?第一,找出找出有比较意义关键句,“正好是一头牛体重的15倍”,第二,按照关键句中文字描述的顺序,“是一头牛体重的15倍”,看到“的几倍”,应该用乘法,“一头牛体重15=一只大象的体重”, 再根据等量关系式列出方程。解:设一头牛的体重是X吨。15X=6X=615X=0.4答:一头牛的体重是0.4吨。另外,还要注意的是,其实每道题目都可以列出三个等量关系式,要提醒学生注意,根据这三个等量关系式,可以列出三个方程,但是,其中有一种方程是X单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论