




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷宣城市第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知实数x,y满足,则目标函数z=xy的最小值为( )A2B5C6D72 已知函数f(x)=log2x,在下列区间中,包含f(x)零点的区间是( )A(0,1)B(1,2)C(2,4)D(4,+)3 “ab,c0”是“acbc”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件4 设0ab且a+b=1,则下列四数中最大的是( )Aa2+b2B2abCaD5 xR,x22x+30的否定是( )A不存在xR,使x22x+30BxR,x22x+30CxR,x22x+30DxR,x22x+306 已知=(2,3,1),=(4,2,x),且,则实数x的值是( )A2B2CD7 已知集合A=x|x是平行四边形,B=x|x是矩形,C=x|x是正方形,D=x|x是菱形,则( )AABBCBCDCDAD8 已知变量满足约束条件,则的取值范围是( )A B C D9 从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )ABCD10在中,若,则( )A B C. D11已知命题p:对任意xR,总有3x0;命题q:“x2”是“x4”的充分不必要条件,则下列命题为真命题的是( )ApqBpqCpqDpq12如图,在等腰梯形ABCD中,AB=2DC=2,DAB=60,E为AB的中点,将ADE与BEC分别沿ED、EC向上折起,使A、B重合于点P,则PDCE三棱锥的外接球的体积为( )ABCD二、填空题13设f(x)是定义在R上且周期为2的函数,在区间1,1上,f(x)=其中a,bR若=,则a+3b的值为14已知函数f(x)=cosxsinx,给出下列四个结论:若f(x1)=f(x2),则x1=x2;f(x)的最小正周期是2;f(x)在区间,上是增函数;f(x)的图象关于直线x=对称其中正确的结论是15数据2,1,0,1,2的方差是16已知,则的值为 17(x)6的展开式的常数项是(应用数字作答)18【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数若有三个零点,则实数m的取值范围是_三、解答题19(本题满分15分)如图是圆的直径,是弧上一点,垂直圆所在平面,分别为,的中点.(1)求证:平面;(2)若,圆的半径为,求与平面所成角的正弦值.【命题意图】本题考查空间点、线、面位置关系,线面等基础知识,意在考查空间想象能力和运算求解能力20在极坐标系内,已知曲线C1的方程为22(cos2sin)+4=0,以极点为原点,极轴方向为x正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C2的参数方程为(t为参数)()求曲线C1的直角坐标方程以及曲线C2的普通方程;()设点P为曲线C2上的动点,过点P作曲线C1的切线,求这条切线长的最小值21设数列的前项和为,且满足,数列满足,且(1)求数列和的通项公式(2)设,数列的前项和为,求证: (3)设数列满足(),若数列是递增数列,求实数的取值范围。22已知数列an共有2k(k2,kZ)项,a1=1,前n项和为Sn,前n项乘积为Tn,且an+1=(a1)Sn+2(n=1,2,2k1),其中a=2,数列bn满足bn=log2,()求数列bn的通项公式;()若|b1|+|b2|+|b2k1|+|b2k|,求k的值23已知函数f(x)=lnxkx+1(kR)()若x轴是曲线f(x)=lnxkx+1一条切线,求k的值;()若f(x)0恒成立,试确定实数k的取值范围24.已知定义域为R的函数f(x)=是奇函数(1)求a的值;(2)判断f(x)在(,+)上的单调性(直接写出答案,不用证明);(3)若对于任意tR,不等式f(t22t)+f(2t2k)0恒成立,求k的取值范围宣城市第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:如图作出阴影部分即为满足约束条件的可行域,由得A(3,5),当直线z=xy平移到点A时,直线z=xy在y轴上的截距最大,即z取最小值,即当x=3,y=5时,z=xy取最小值为2故选A2 【答案】C【解析】解:f(x)=log2x,f(2)=20,f(4)=0,满足f(2)f(4)0,f(x)在区间(2,4)内必有零点,故选:C3 【答案】A【解析】解:由“ab,c0”能推出“acbc”,是充分条件,由“acbc”推不出“ab,c0”不是必要条件,例如a=1,c=1,b=1,显然acbc,但是ab,c0,故选:A【点评】本题考查了充分必要条件,考查了不等式的性质,是一道基础题4 【答案】A【解析】解:0ab且a+b=12b12aba=a(2b1)0,即2aba又a2+b22ab=(ab)20a2+b22ab最大的一个数为a2+b2故选A5 【答案】C【解析】解:因为特称命题的否定是全称命题,所以,xR,x22x+30的否定是:xR,x22x+30故选:C6 【答案】A【解析】解: =(2,3,1),=(4,2,x),且,=0,86+x=0;x=2;故选A【点评】本题考查向量的数量积判断向量的共线与垂直,解题的关键是将垂直关系转化为两向量的内积为0,建立关于x的方程求出x的值7 【答案】B【解析】解:因为菱形是平行四边形的特殊情形,所以DA,矩形与正方形是平行四边形的特殊情形,所以BA,CA,正方形是矩形,所以CB故选B8 【答案】A【解析】试题分析:作出可行域,如图内部(含边界),表示点与原点连线的斜率,易得,所以故选A考点:简单的线性规划的非线性应用9 【答案】B【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到,这三个事件是相互独立的,第一次不被抽到的概率为,第二次不被抽到的概率为,第三次被抽到的概率是,女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,故选B10【答案】B【解析】考点:正弦定理的应用.11【答案】D【解析】解:p:根据指数函数的性质可知,对任意xR,总有3x0成立,即p为真命题,q:“x2”是“x4”的必要不充分条件,即q为假命题,则pq为真命题,故选:D【点评】本题主要考查复合命题的真假关系的应用,先判定p,q的真假是解决本题的关键,比较基础12【答案】C【解析】解:易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为,外接球的体积为,故选C【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题二、填空题13【答案】10 【解析】解:f(x)是定义在R上且周期为2的函数,f(x)=,f()=f()=1a,f()=;又=,1a=又f(1)=f(1),2a+b=0,由解得a=2,b=4;a+3b=10故答案为:1014【答案】 【解析】解:函数f(x)=cosxsinx=sin2x,对于,当f(x1)=f(x2)时,sin2x1=sin2x2=sin(2x2)2x1=2x2+2k,即x1+x2=k,kZ,故错误;对于,由函数f(x)=sin2x知最小正周期T=,故错误;对于,令+22x+2k,kZ得+kx+k,kZ当k=0时,x,f(x)是增函数,故正确;对于,将x=代入函数f(x)得,f()=为最小值,故f(x)的图象关于直线x=对称,正确综上,正确的命题是故答案为:15【答案】2 【解析】解:数据2,1,0,1,2,=,S2= (20)2+(10)2+(00)2+(10)2+(20)2=2,故答案为2;【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,xn的平均数,是一道基础题;16【答案】【解析】, , 故答案为.考点:1、同角三角函数之间的关系;2、两角和的正弦公式.17【答案】160 【解析】解:由于(x)6展开式的通项公式为 Tr+1=(2)rx62r,令62r=0,求得r=3,可得(x)6展开式的常数项为8=160,故答案为:160【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题18【答案】【解析】三、解答题19【答案】(1)详见解析;(2).【解析】(1),分别为,的中点,2分为圆的直径,4分又圆,6分,又,;7分(2)设点平面的距离为,由得,解得,12分 设与平面所成角为,则.15分20【答案】 【解析】【专题】计算题;直线与圆;坐标系和参数方程【分析】()运用x=cos,y=sin,x2+y2=2,即可得到曲线C1的直角坐标方程,再由代入法,即可化简曲线C2的参数方程为普通方程;()可经过圆心(1,2)作直线3x+4y15=0的垂线,此时切线长最小再由点到直线的距离公式和勾股定理,即可得到最小值【解答】解:()对于曲线C1的方程为22(cos2sin)+4=0,可化为直角坐标方程x2+y22x+4y+4=0,即圆(x1)2+(y+2)2=1;曲线C2的参数方程为(t为参数),可化为普通方程为:3x+4y15=0()可经过圆心(1,2)作直线3x+4y15=0的垂线,此时切线长最小则由点到直线的距离公式可得d=4,则切线长为=故这条切线长的最小值为【点评】本题考查极坐标方程、参数方程和直角坐标方程、普通方程的互化,考查直线与圆相切的切线长问题,考查运算能力,属于中档题21【答案】【解析】解:Sn2an,即anSn2,an1Sn12.两式相减:an1anSn1Sn0.即an1anan10,故有2an1an,an0,bn1bnan(n1,2,3,),得b2b11,将这n1个等式相加,得又b11,(2)证明:.而得8(n1,2,3,)Tn8.(3)由(1)知由数列是递增数列,对恒成立,即恒成立,即恒成立,当为奇数时,即恒成立,当为偶数时,即恒成立,综上实数的取值范围为 22【答案】 【解析】(本小题满分13分)解:(1)当n=1时,a2=2a,则;当2n2k1时,an+1=(a1)Sn+2,an=(a1)Sn1+2,所以an+1an=(a1)an,故=a,即数列an是等比数列,Tn=a1a2an=2na1+2+(n1)=,bn=(2)令,则nk+,又nN*,故当nk时,当nk+1时,|b1|+|b2|+|b2k1|+|b2k|=+()+()=(k+1+b2k)(b1+bk)=+k=,由,得2k26k+30,解得,又k2,且kN*,所以k=2【点评】本题考查数列的通项公式的求法,考查满足条件的实数值的求法,是中档题,解题时要认真审题,注意等比数列的性质和构造法的合理运用23【答案】 【解析】解:(1)函数f(x)的定义域为(0,+),f(x)=k=0,x=,由ln1+1=0,可得k=1;(2)当k0时,f(x)=k0,f(x)在(0,+)上是增函数;当k0时,若x(0,)时,有f(x)0,若x(,+)时,有f(x)0,则f(x)在(0,)上是增函数,在(,+)上是减函数k0时,f(x)在(0,+)上是增函数,而f(1)=1k0,f(x)0不成立,故k0,f(x)的最大值为f(),要使f(x)0恒成立,则f()0即可,即lnk0,得k1【点评】本题考查导数的几何意义,考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会计逻辑测试题及答案
- 大学语文群文阅读阶段性工作总结
- 上岗培训流程
- 外币反假培训
- 2025年中国磨刀棒行业市场全景分析及前景机遇研判报告
- 儿科危重症专科护士培训汇报
- 产后母婴护理教程
- 机打发票培训
- 转正制度培训
- 旅游度假村场地合作运营协议
- DIP支付下的病案首页填写
- 应急管理部门职工招聘合同
- 2025年教师招聘教师资格面试逐字稿初中体育教师招聘面试《排球正面双手垫球》试讲稿(逐字稿)
- 2024北京海淀初一(上)期中数学试卷及答案解析
- 2023年贵州贵州贵安发展集团有限公司招聘笔试真题
- 七年级下册古诗词对比阅读训练-2025年中考语文复习之古代诗歌阅读
- 2025年中学教师综合素质考点梳理
- 神经内科常见药物及管理
- 2025版国家开放大学法学本科《国际私法》历年期末纸质考试案例题题库
- 【MOOC】中医诊断学-福建中医药大学 中国大学慕课MOOC答案
- 物理-2025年中考终极押题猜想(广州专用)(原卷版)
评论
0/150
提交评论