海兴县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
海兴县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
海兴县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
海兴县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
海兴县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷海兴县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知函数,则( )A B C D【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.2 已知双曲线=1(a0,b0)的左右焦点分别为F1,F2,若双曲线右支上存在一点P,使得F2关于直线PF1的对称点恰在y轴上,则该双曲线的离心率e的取值范围为( )A1eBeCeD1e3 如图所示是一个几何体的三视图,其中正视图是一个正三角形,则这个几何体的表面积是( )ABC +D +14 在ABC中,AB边上的中线CO=2,若动点P满足=(sin2)+(cos2)(R),则(+)的最小值是( )A1B1C2D05 已知直线l1:(3+m)x+4y=53m,l2:2x+(5+m)y=8平行,则实数m的值为( )A7B1C1或7D6 执行如图所示的程序框图,输出的结果是()A15 B21 C24 D357 直径为6的球的表面积和体积分别是( )A B C D8 给出以下四个说法:绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;线性回归直线一定经过样本中心点,;设随机变量服从正态分布N(1,32)则p(1)=;对分类变量X与Y它们的随机变量K2的观测值k越大,则判断“与X与Y有关系”的把握程度越小其中正确的说法的个数是( )A1B2C3D49 数列an的首项a1=1,an+1=an+2n,则a5=( )AB20C21D3110若命题p:xR,x20,命题q:xR,x,则下列说法正确的是( )A命题pq是假命题B命题p(q)是真命题C命题pq是真命题D命题p(q)是假命题11已知f(x)为定义在(0,+)上的可导函数,且f(x)xf(x)恒成立,则不等式x2f()f(x)0的解集为( )A(0,1)B(1,2)C(1,+)D(2,+)12已知函数f(x)=ax+b(a0且a1)的定义域和值域都是1,0,则a+b=( )ABCD或二、填空题13在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是14长方体ABCDA1B1C1D1的8个顶点都在球O的表面上,E为AB的中点,CE=3,异面直线A1C1与CE所成角的余弦值为,且四边形ABB1A1为正方形,则球O的直径为15已知,是空间二向量,若=3,|=2,|=,则与的夹角为16在正方体ABCDA1B1C1D1中,异面直线A1B与AC所成的角是17某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为18椭圆的两焦点为F1,F2,一直线过F1交椭圆于P、Q,则PQF2的周长为三、解答题19如图所示,一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y26x91=0内切,求动圆圆心M的轨迹方程,并说明它是什么样的曲线20如图,在RtABC中,ACB=,AC=3,BC=2,P是ABC内一点(1)若P是等腰三角形PBC的直角顶角,求PA的长;(2)若BPC=,设PCB=,求PBC的面积S()的解析式,并求S()的最大值21已知x2y2+2xyi=2i,求实数x、y的值22(本小题满分10分)已知曲线的极坐标方程为,将曲线,(为参数),经过伸缩变换后得到曲线(1)求曲线的参数方程;(2)若点的在曲线上运动,试求出到曲线的距离的最小值23已知数列an满足a1=a,an+1=(nN*)(1)求a2,a3,a4;(2)猜测数列an的通项公式,并用数学归纳法证明24如图,在四边形中, 四边形绕着直线旋转一周.(1)求所成的封闭几何体的表面积;(2)求所成的封闭几何体的体积.海兴县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B2 【答案】B【解析】解:设点F2(c,0),由于F2关于直线PF1的对称点恰在y轴上,不妨设M在正半轴上,由对称性可得,MF1=F1F2=2c,则MO=c,MF1F2=60,PF1F2=30,设直线PF1:y=(x+c),代入双曲线方程,可得,(3b2a2)x22ca2xa2c23a2b2=0,则方程有两个异号实数根,则有3b2a20,即有3b2=3c23a2a2,即ca,则有e=故选:B3 【答案】D【解析】解:由三视图可知:该几何体是如图所示的三棱锥,其中侧面PAC面ABC,PAC是边长为2的正三角形,ABC是边AC=2,边AC上的高OB=1,PO=为底面上的高于是此几何体的表面积S=SPAC+SABC+2SPAB=2+21+2=+1+故选:D【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状4 【答案】 C【解析】解: =(sin2)+(cos2)(R),且sin2+cos2=1,=(1cos2)+(cos2)=+cos2(),即=cos2(),可得=cos2,又cos20,1,P在线段OC上,由于AB边上的中线CO=2,因此(+)=2,设|=t,t0,2,可得(+)=2t(2t)=2t24t=2(t1)22,当t=1时,( +)的最小值等于2故选C【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题5 【答案】A【解析】解:因为两条直线l1:(3+m)x+4y=53m,l2:2x+(5+m)y=8,l1与l2平行所以,解得m=7故选:A【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力6 【答案】C【解析】【知识点】算法和程序框图【试题解析】否,否,否,是,则输出S=24故答案为:C7 【答案】D【解析】考点:球的表面积和体积8 【答案】B【解析】解:绘制频率分布直方图时,各小长方形的面积等于相应各组的频率,故错;线性回归直线一定经过样本中心点(,),故正确;设随机变量服从正态分布N(1,32)则p(1)=,正确;对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,故不正确故选:B【点评】本题考查统计的基础知识:频率分布直方图和线性回归及分类变量X,Y的关系,属于基础题9 【答案】C【解析】解:由an+1=an+2n,得an+1an=2n,又a1=1,a5=(a5a4)+(a4a3)+(a3a2)+(a2a1)+a1=2(4+3+2+1)+1=21故选:C【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题10【答案】 B【解析】解:xR,x20,即不等式x20有解,命题p是真命题;x0时,x无解,命题q是假命题;pq为真命题,pq是假命题,q是真命题,p(q)是真命题,p(q)是真命题;故选:B【点评】考查真命题,假命题的概念,以及pq,pq,q的真假和p,q真假的关系11【答案】C【解析】解:令F(x)=,(x0),则F(x)=,f(x)xf(x),F(x)0,F(x)为定义域上的减函数,由不等式x2f()f(x)0,得:,x,x1,故选:C12【答案】B【解析】解:当a1时,f(x)单调递增,有f(1)=+b=1,f(0)=1+b=0,无解;当0a1时,f(x)单调递减,有f(1)=0,f(0)=1+b=1,解得a=,b=2;所以a+b=;故选:B二、填空题13【答案】 【解析】解:在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥,8个三棱锥的体积为: =剩下的凸多面体的体积是1=故答案为:【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力14【答案】4或 【解析】解:设AB=2x,则AE=x,BC=,AC=,由余弦定理可得x2=9+3x2+923,x=1或,AB=2,BC=2,球O的直径为=4,或AB=2,BC=,球O的直径为=故答案为:4或15【答案】60 【解析】解:|=,=3,cos=与的夹角为60故答案为:60【点评】本题考查平面向量数量积表示夹角和模长,本题解题的关键是整理出两个向量的数量积,再用夹角的表示式16【答案】60 【解析】解:连结BC1、A1C1,在正方体ABCDA1B1C1D1中,A1A平行且等于C1C,四边形AA1C1C为平行四边形,可得A1C1AC,因此BA1C1(或其补角)是异面直线A1B与AC所成的角,设正方体的棱长为a,则A1B1C中A1B=BC1=C1A1=a,A1B1C是等边三角形,可得BA1C1=60,即异面直线A1B与AC所成的角等于60故答案为:60【点评】本题在正方体中求异面直线所成角和直线与平面所成角的大小,着重考查了正方体的性质、空间角的定义及其求法等知识,属于中档题17【答案】12 【解析】解:设两者都喜欢的人数为x人,则只喜爱篮球的有(15x)人,只喜爱乒乓球的有(10x)人,由此可得(15x)+(10x)+x+8=30,解得x=3,所以15x=12,即所求人数为12人,故答案为:1218【答案】20 【解析】解:a=5,由椭圆第一定义可知PQF2的周长=4aPQF2的周长=20,故答案为20【点评】作出草图,结合图形求解事半功倍三、解答题19【答案】 【解析】解:(方法一)设动圆圆心为M(x,y),半径为R,设已知圆的圆心分别为O1、O2,将圆的方程分别配方得:(x+3)2+y2=4,(x3)2+y2=100,当动圆与圆O1相外切时,有|O1M|=R+2当动圆与圆O2相内切时,有|O2M|=10R将两式相加,得|O1M|+|O2M|=12|O1O2|,动圆圆心M(x,y)到点O1(3,0)和O2(3,0)的距离和是常数12,所以点M的轨迹是焦点为点O1(3,0)、O2(3,0),长轴长等于12的椭圆2c=6,2a=12,c=3,a=6b2=369=27圆心轨迹方程为,轨迹为椭圆(方法二):由方法一可得方程,移项再两边分别平方得:2两边再平方得:3x2+4y2108=0,整理得所以圆心轨迹方程为,轨迹为椭圆【点评】本题以两圆的位置关系为载体,考查椭圆的定义,考查轨迹方程,确定轨迹是椭圆是关键20【答案】 【解析】解:(1)P为等腰直角三角形PBC的直角顶点,且BC=2,PCB=,PC=,ACB=,ACP=,在PAC中,由余弦定理得:PA2=AC2+PC22ACPCcos=5,整理得:PA=;(2)在PBC中,BPC=,PCB=,PBC=,由正弦定理得: =,PB=sin,PC=sin(),PBC的面积S()=PBPCsin=sin()sin=sin(2+),(0,),则当=时,PBC面积的最大值为【点评】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键21【答案】 【解析】解:由复数相等的条件,得(4分)解得或(8分)【点评】本题考查复数相等的条件,以及方程思想,属于基础题22【答案】(1)(为参数);(2).【解析】试题解析:(1)将曲线(为参数),化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论