


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
七极坐标与参数方程(B)1.(2018顺德区一模)在直角坐标系xOy中,曲线C1的参数方程为(为参数),曲线C1经过坐标变换后得到的轨迹为曲 线C2.(1)求C2的极坐标方程;(2)在以O为极点,x轴的正半轴为极轴的极坐标中,射线=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.2.(2018曲靖二模)在平面直角坐标系中,以O为极点,x轴为正半轴建立极坐标系,取相同的长度单位,若曲线C1的极坐标方程为sin(-)=3,曲线C2的参数方程为(为参数).(1)将曲线C1的极坐标方程化为直角坐标方程,C2的参数方程化为普通方程;(2)设P是曲线C1上任一点,Q是曲线C2上任一点,求|PQ|的最小值.3.(2018六安高三模拟)在平面直角坐标系xOy中,曲线C1过点P(a,1),其参数方程为(t为参数,aR),以O为极点,x轴非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为cos 2+4cos -=0.(1)求曲线C1的普通方程和曲线C2的直角坐标方程;(2)若已知曲线C1和曲线C2交于A,B两点,且|PA|=2|PB|,求实数a 的值.4.(2018思明区校级模拟)在以坐标原点为极点,x轴的正半轴为极轴建立的极坐标系中,曲线C1的极坐标方程为=2,正三角形ABC的顶点都在C1上,且A,B,C依逆时针次序排列,点A的坐标为(2,0).(1)求点B,C的直角坐标;(2)设P是圆C2:x2+(y+)2=1上的任意一点,求|PB|2+|PC|2的取值 范围.1.解:(1)曲线C1的参数方程为(为参数),转化为直角坐标方程为x2+y2=1,曲线C1经过坐标变换后得到的轨迹为曲线C2.即+y2=1,故C2的直角坐标方程为+y2=1.转化为极坐标方程为+2sin2=1.(2)曲线C1的参数方程为(为参数),转化为极坐标方程为1=1,由题意得到A(1,),将B(2,)代入坐标方程+2sin2=1.得到2=,则|AB|=|1-2|=-1.2.解:(1)因为曲线C1的极坐标方程为sin(-)=3,所以sin -cos =3,所以曲线C1的直角坐标方程为x-y+6=0.因为曲线C2的参数方程为(为参数),所以曲线C2的普通方程为x2+(y+2)2=4.(2)因为曲线C2:x2+(y+2)2=4是以(0,-2)为圆心,以2为半径的圆,圆心(0,-2)到曲线C1:x-y+6=0的距离d=4,P是曲线C1上任一点,Q是曲线C2上任一点,所以|PQ|的最小值为d-r=4-2=2.3.解:(1)C1的参数方程(t为参数,aR)消参得普通方程为x-y-a+1=0,C2的极坐标方程为cos2+4cos -=0两边同乘得2cos2+4cos -2=0即y2=4x.(2)将曲线C1的参数方程(t为参数,aR)代入曲线C2:y2=4x得t2-t+1-4a=0,由=(-)2-4(1-4a)0,得a0,设A,B对应的参数分别为t1,t2,由题意得|t1|=2|t2|,即t1=2t2或t1=-2t2,当t1=2t2时,解得a=,当t1=-2t2时,解得a=,综上,a=或.4.解:(1)因为曲线C1的极坐标方程为=2,所以曲线C1的直角坐标方程为x2+y2=4,因为正三角形ABC的顶点都在C1上,且A,B,C依逆时针次序排列,点A的坐标为(2,0),所以B点的坐标为(2cos 120,2sin 120),即B(-1,),C点的坐标为(2cos 240,2sin 240),即C(-1,-).(2)因为圆C2:x2+(y+)2=1,所以圆C2的参数方程02,设点P(cos ,-+sin ),02,所以|PB|2+|PC|2=(cos
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年第十三届贵州人才博览会省委金融办所属事业单位人才引进1人考前自测高频考点模拟试题及答案详解(典优)
- 2025春季北方华创招聘考前自测高频考点模拟试题及参考答案详解
- 2025广东珠海市金湾区招聘公办中小学编制内教师160人考前自测高频考点模拟试题及答案详解(名师系列)
- 2025广西广西民族大学招聘1人(国际合作与交流处外事科工作人员)考前自测高频考点模拟试题附答案详解(完整版)
- 2025广西钦州市钦南区林业局招聘1人模拟试卷附答案详解(典型题)
- 安全培训教师会课件
- 安全培训教导员介绍课件
- 2025贵州铜仁职业技术学院引进人才57人考前自测高频考点模拟试题参考答案详解
- 2025年河北石家庄协和医学中等专业学校公开招聘教师20名模拟试卷及答案详解(全优)
- 2025年延吉市党史地方志办公室招聘公益性岗位的模拟试卷及答案详解(网校专用)
- DB3302T1135-2022新建小区室内公共体育设施配置和管理规范
- 2025年装载机行业当前竞争格局与未来发展趋势分析报告
- 水务局面试真题及答案解析:水利行业招聘面试实战
- 2025年飞行服务站无人机培训行业现状分析报告
- 如何上好语文课的讲座
- 2025年高校教师思政素质和师德师风考试题库及答案
- 强迫性障碍护理查房
- 2025年辅警考试公安基础知识考试试题库及参考答案
- 音乐欣赏课件
- 物业对中介管理办法
- 骨科病人饮食护理课件
评论
0/150
提交评论