湘潭大学2016年硕士研究生数学分析高等代数考试大纲及参考书目.doc_第1页
湘潭大学2016年硕士研究生数学分析高等代数考试大纲及参考书目.doc_第2页
湘潭大学2016年硕士研究生数学分析高等代数考试大纲及参考书目.doc_第3页
湘潭大学2016年硕士研究生数学分析高等代数考试大纲及参考书目.doc_第4页
湘潭大学2016年硕士研究生数学分析高等代数考试大纲及参考书目.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湘潭大学2016年硕士研究生入学考试自命题科目考试大纲科目代码科目名称考 试 大 纲 高等代数适用于数学一级学科硕士研究生招生入学考试。重点考核学生对高等代数的基本概念、基本理论、基本方法和基本技巧的掌握与运用能力。考查的知识要点如下:1多项式:数域的概念,一元多项式的概念和运算性质,整除的概念和常用性质,带余除法,辗转相除法,最大公因式的概念和性质,不可约多项式的概念和性质,因式分解及唯一性定理,标准分解式的概念,重因式的概念、性质及一多项式有无重因式的判别方法,多项式函数的概念、性质及根,代数基本定理,复系数与实系数多项式的因式分解定理,有理系数多项式、整系数多项式和本原多项式的概念、性质及相互关系,整系数多项式的有理根的求法,Eisenstein判别法。2行列式:n级排列的概念和性质,n级行列式的概念、性质及计算方法,矩阵的概念及其初等变换,行列式按一行(列)展开,代数余子式,范德蒙行列式,克兰姆(Cramer)法则及应用。3线性方程组:消元法,n维向量空间的概念和运算性质,线性相(无)关性的概念和性质,矩阵的k级子式,矩阵的秩的概念、性质及与行列式的关系,线性方程组有解判别定理,线性方程组解的结构。4矩阵:矩阵的概念与运算,矩阵乘积的行列式与秩,矩阵的逆的概念、性质及求法,矩阵分块的概念和分块矩阵的运算,初等矩阵及与矩阵的初等变换的关系,分块乘法的初等变换及应用。5二次型:二次型的矩阵表示,矩阵的合同关系,对称矩阵的概念和性质,用非退化线性变换化二次型为标准形,实、复二次型的规范型,惯性定理与惯性指数,正定、半正定二次型的概念、性质及判别方法。 6线性空间:集合、映射的定义与运算性质,线性空间的定义与简单性质,维数、基与坐标的概念和性质,基变换与坐标变换,线性子空间的概念和性质,子空间的交与和的概念及性质,子空间的直和的定义及判别准则,线性空间的同构,同构映射的概念和性质。7线性变换:线性变换的定义、运算及其简单性质,线性变换的矩阵及其性质,矩阵的相似关系的定义及其性质,特征多项式、特征值与特征向量的定义、性质及计算,线性变换在某一组基下的矩阵为对角矩阵的条件(即矩阵相似于对角矩阵的条件),线性变换的值域与核的概念及性质,不变子空间的概念,不变子空间与线性变换矩阵化简之间的关系,若当(Jordan)标准形的概念及应用,最小多项式的概念和性质及求法。8-矩阵:-矩阵的定义及其秩、逆和初等变换,-矩阵在初等变换下的标准形,行列式因子、不变因子和初等因子的定义、性质及求法,矩阵相似的条件,复矩阵若当(Jordan)标准形的计算。9欧几里得空间:欧几里得空间(含内积)的定义与基本性质,欧几里得空间中基的度量矩阵,正交向量组、正交基、标准正交基的定义、基本性质及相互关系,施密特正交化方法,欧几里得空间的同构,正交变换、正交矩阵的定义和性质,子空间的正交关系,对称变换、实对称矩阵的性质及其标准形的求法,酉空间的概念和性质。科目代码科目名称考 试 大 纲 数学分析适用于数学一级学科硕士研究生招生入学考试。重点考核学生对数学分析的基本概念、基本理论、基本方法和基本技巧的掌握与运用能力。考查的知识要点如下:1集合与映射:集合与映射的概念及运算,一元函数的概念,初等函数,复合函数,函数的分段表示,隐式表示,参数表示,函数的奇偶性、单调性、周期性和有界性,三角不等式与均值不等式。2数列的极限: 实数系,最大数与最小数,上确界与下确界的概念,实数系的连续性,数列极限的定义, 数列极限的性质 ,数列极限的四则运算法则, 无穷小量与无穷大量的概念,Stolz定理, 单调有界数列必有极限 ,闭区间套定理 ,Bolzano-Weierstrass定理 ,Cauchy收敛原理。3函数极限与连续函数:函数极限的概念、性质和四则运算法则,函数极限与数列极限的关系,单侧极限,函数极限定义的扩充,连续的概念,连续函数的四则运算法则,不连续点的类型,反函数的连续性,复合函数的连续性,初等函数的连续性,闭区间上连续函数的性质(有界性定理, 最值定理,介值定理,零点存在定理,一致连续概念,Cantor定理.)。4导数:导数的概念,几何意义,基本初等函数的求导公式,求导的四则运算法则,反函数的导数,复合函数的导数,用参数方程表示的函数的求导法,可导与连续的关系,微分的概念及四则运算法则,复合函数的微分,一阶微分形式的不变性,高阶导数、高阶微分的概念,高阶导数的运算法则,一些简单函数的高阶导数、高阶微分。5微分中值定理及应用: 罗尔定理、Lagrange中值定理,Cauchy中值定理,LHospital法则,Taylor公式,一元函数单调性的概念及判别,极值的概念及求法,函数的最值的求法,函数图形的凹凸性和拐点,渐近线的概念及求法,函数图形的描绘。 6不定积分:不定积分的概念,不定积分的基本公式及运算法则,换元法,分部积分法,有理函数的积分,三角函数有理分式的积分。7定积分:定积分的概念,Darboux大和与Darboux小和的概念,Riemann可积的充分必要条件,可积函数类( 连续函数,只有有限个间断点的函数,单调有界函数),定积分的基本性质,积分第一中值定理,基本积分不等式,Newton-Leibniz 公式,定积分的换元法与分步积分法,定积分的应用。8反常积分:反常积分收敛和发散的概念,Cauchy收敛原理,比较判别法,Cauchy判别法,积分第二中值定理,Abel判别法,Dirichlet判别法,Cauchy积分主值的概念及计算。9数项级数:数项级数的收敛与发散的概念,级数的基本性质,Cauchy收敛准则,正项级数的收敛原理及判别法(比较判别法,Cauchy判别法,DAlembert判别法,积分判别法),交错级数,Leibniz判别法,绝对收敛与条件收敛概念, Abel变换,Abel判别法,Dirchlet 判别法, 绝对收敛级数的性质。10. 函数项级数: 一致收敛的概念及性质(和函数连续性,逐项求导,逐项求积),一致收敛的判别法(Weiezstzass判别法,Abel判别法,Dirichlet判别法),Dini定理),幂级数的收敛半径,幂级数的性质(连续性,逐项求导,逐项求积),函数的幂级数展开,用多项式逼近连续函数。11. 欧几里得空间上的极限和连续: 欧几里得空间上的距离与极限,开集、闭集、紧集的概念,欧几里得空间上的基本定理,多元函数极限的概念及性质,累次极限,多元连续函数的概念及性质,紧集上连续函数的性质。12. 多元函数的微分学:偏导数和全微分的概念,可微与可导、可微与连续的关系,高阶偏导数,高阶全微分的概念及计算,多元复合函数求导的链式法则,一阶微分形式的不变性,中值定理与Taylor公式,隐函数的存在性,反函数的存在性,隐函数的导数,空间曲线的切线与法平面,空间曲面的切平面与法线,多元函数的极值及其求法,条件极值的概念及求法。13. 重积分:重积分的概念及性质,二重积分的计算(直角坐标,极坐标及一般的坐标变换)及应用,三重积分的计算(三重积分化为累次积分,直角坐标、柱面坐标、球面坐标及一般换元法),反常重积分收敛与发散的概念及判别。14. 曲线积分与曲面积分:第一类曲线积分与第一类曲面积分的概念、性质及计算,第二类曲线积分与第二类曲面积分的概念、性质及计算,Green公式,平面曲线积分与路径无关性,Gauss公式,Stokes公式。15. 含参变量的积分:含参变量的常义积分的概念及性质(连续性,积分号下求导,积分次序的交换),含参变量反常积分一致收敛的概念及性质(连续性,积分号下求导数,积分次序的交换),一致收敛判别法,B函数,函数,Stirling公式。16. Fourier级数:函数的Fourier级数展开,Fourier级数的收敛判别法,Fourier级数的分析性质与逼近性质。参考书目数学院指定参考书: 1、高等代数第三版,王萼芳,石生明,北京大学编,高等教育出版社 2、数学分析上下册第二版,陈纪修,於崇华,金路,高等教育出版社 3、西方经济学 微观经济学现代观点,范里安著,上海人民出版社、上海三联书店。 宏观经济学,多恩布什等箸,中国财政经济出版社。 4、统计学(第四或六版)(21世纪统计学系列教材;“十一五”国家级规划教材),贾俊平 等编著,2009年11月,中国人民 大学出版社 其它参考资料 1、历年真题及答案详解2004-2015,所有试题均有详细解答,含讲义笔记。有需要者可联系师兄求秋:一五八 九六二四 七一七 2、数学分析解题精粹,钱吉林主编 3、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论