



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
9.3直线与圆、圆与圆的位置关系考点直线与圆、圆与圆的位置关系12.(2015广东,5,5分)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y-5=0 B.2x+y+=0或2x+y-=0C.2x-y+5=0或2x-y-5=0 D.2x-y+=0或2x-y-=0答案A切线平行于直线2x+y+1=0,故可设切线方程为2x+y+c=0(c1),结合题意可得=,解得c=5.故选A.14.(2014湖北,12,5分)直线l1:y=x+a和l2:y=x+b将单位圆C:x2+y2=1分成长度相等的四段弧,则a2+b2=.答案2解析由题意知直线l1和l2与单位圆C所在的位置如图.因此或故a2+b2=1+1=2.评析本题考查了直线和圆的位置关系,考查了直线的斜率和截距,考查了数形结合的思想方法.正确画出图形求出a和b的值是解题的关键.15.(2015福建,18,13分)已知椭圆E:+=1(ab0)过点(0,),且离心率e=.(1)求椭圆E的方程;(2)设直线l:x=my-1(mR)交椭圆E于A,B两点,判断点G与以线段AB为直径的圆的位置关系,并说明理由.解析解法一:(1)由已知得解得所以椭圆E的方程为+=1.(2)设点A(x1,y1),B(x2,y2),AB的中点为H(x0,y0).由得(m2+2)y2-2my-3=0,所以y1+y2=,y1y2=-,从而y0=.所以|GH|2=+=+=(m2+1)+my0+.=(1+m2)(-y1y2),故|GH|2-=my0+(1+m2)y1y2+=-+=0,所以|GH|.故点G在以AB为直径的圆外.解法二:(1)同解法一.(2)设点A(x1,y1),B(x2,y2),则=,=.由得(m2+2)y2-2my-3=0,所以y1+y2=,y1y2=-,从而=+y1y2=+y1y2=(m2+1)y1y2+m(y1+y2)+=+=0,所以cos0.又,不共线,所以AGB为锐角.故点G在以AB为直径的圆外.评析本题主要考查椭圆、圆、直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想.16.(2014江苏,18,16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80 m.经测量,点A位于点O正北方向60 m处,点C位于点O正东方向170 m处(OC为河岸),tanBCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?解析解法一:(1)如图,以O为坐标原点,OC所在直线为x轴,建立平面直角坐标系xOy.由条件知A(0,60),C(170,0),直线BC的斜率kBC=-tanBCO=-.因为ABBC,所以直线AB的斜率kAB=.设点B的坐标为(a,b),则kBC=-,kAB=.解得a=80,b=120.所以BC=150.因此新桥BC的长是150 m.(2)设保护区的边界圆M的半径为r m,OM=d m(0d60).由条件知,直线BC的方程为y=-(x-170),即4x+3y-680=0.由于圆M与直线BC相切,故点M(0,d)到直线BC的距离是r,即r=.因为O和A到圆M上任意一点的距离均不少于80 m,所以即解得10d35.故当d=10时,r=最大,即圆面积最大.所以当OM=10 m时,圆形保护区的面积最大.解法二:(1)如图,延长OA,CB交于点F.因为tanFCO=,所以sinFCO=,cosFCO=.因为OA=60,OC=170,所以OF=OCtanFCO=,CF=,从而AF=OF-OA=.因为OAOC,所以cosAFB=sinFCO=.又因为ABBC,所以BF=AFcosAFB=,从而BC=CF-BF=150.因此新桥BC的长是150 m.(2)设保护区的边界圆M与BC的切点为D,连结MD,则MDBC,且MD是圆M的半径,并设MD=r m,OM=d m(0d60).因为OAOC,所以sinCFO=cosFCO.故由(1)知sinCFO=,所以r=.因为O和A到圆M上任意一点的距离均不少于80 m,所以即解得10d35.故当d=10时,r=最大,即圆面积最大.所以当OM=10 m时,圆形保护区的面积最大.评析本题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力.17.(2013江苏,17,14分)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.解析(1)由题意知,圆心C是直线y=2x-4和y=x-1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C的切线方程为y=kx+3,由题意得,=1,解得k=0或-,故所求切线方程为y=3或3x+4y-12=0.(2)因为圆心在直线y=2x-4上,所以圆C的方程为(x-a)2+y-2(a-2)2=1.设点M(x,y),因为MA=2MO,所以=2,化简得x2+y2+2y-3=0,即x2+(y+1)2=4,所以点M在以D(0,-1)为圆心,2为半径的圆上.由题意,点M(x,y)在圆C上,所以圆C与圆D有公共点,则|2-1|CD2+1,即13.由5a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大模型和数据要素赋能智慧环保大数据平台解决方案
- 蓝色卡通风消费技巧培训模板
- 酿酒技术及管理知识培训课件
- 实验动物助理技师模考试题+答案
- CN120204818A 一种工业废气的脱硫装置
- 老年人家庭小吃培训课件
- 诗词文言文对比阅读(一)原卷版-2026年中考语文专项复习(浙江专用)
- 声与光-2024年中考科学一轮复习(浙江新统考专用)原卷版
- CN120203315A 一种多体型适配的人体测量与个性化服装样板生成方法
- CN120202777A 一种种子播种预处理设备
- GB/T 34239-2017聚3-羟基丁酸-戊酸酯/聚乳酸(PHBV/PLA)共混物长丝
- GB/T 26814-2011微波消解装置
- GB/T 13384-2008机电产品包装通用技术条件
- 粘膜免疫系统概述
- 钢板桩及支撑施工方案
- 新部编版四年级上册语文全册完整课件
- 政府信息公开申请表
- 冷藏车保温箱冰排使用记录
- FANUC工业机器人离线与应用项目7 工业机器人KAREL程序
- 综合能源管理解决方案(完整版)
- DB43∕T 291-2006 桃源大叶茶栽培技术规程
评论
0/150
提交评论