北屯市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
北屯市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
北屯市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
北屯市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
北屯市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北屯市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 如图所示是一个几何体的三视图,其中正视图是一个正三角形,则这个几何体的表面积是( )ABC +D +12 棱长为的正方体的8个顶点都在球的表面上,则球的表面积为( )A B C D3 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为、的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A96B48C24D04 在中,角,的对边分别是,为边上的高,若,则到边的距离为( )A2 B3 C.1 D45 下列函数中,在区间(0,+)上为增函数的是( )Ay=x1By=()xCy=x+Dy=ln(x+1)6 在下面程序框图中,输入,则输出的的值是( )A B C D【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类.7 方程表示的曲线是( )A一个圆 B 两个半圆 C两个圆 D半圆8 若定义在R上的函数f(x)满足f(0)=1,其导函数f(x)满足f(x)k1,则下列结论中一定错误的是( )ABCD9 在平行四边形ABCD中,AC为一条对角线, =(2,4),=(1,3),则等于( )A(2,4)B(3,5)C(3,5)D(2,4)10某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如表几组样本数据:x3456y2.5344.5据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为0.7,则这组样本数据的回归直线方程是( )A =0.7x+0.35B =0.7x+1C =0.7x+2.05D =0.7x+0.45 11如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形则该几何体表面积等于( )A12+B12+23C12+24D12+12线段AB在平面内,则直线AB与平面的位置关系是( )AABBABC由线段AB的长短而定D以上都不对二、填空题13若命题“xR,x22x+m0”是假命题,则m的取值范围是14某工厂的某种型号的机器的使用年限x和所支出的维修费用y(万元)的统计资料如表:x681012y2356根据上表数据可得y与x之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为万元15设MP和OM分别是角的正弦线和余弦线,则给出的以下不等式:MPOM0;OM0MP;OMMP0;MP0OM,其中正确的是(把所有正确的序号都填上)16等比数列an的前n项和Snk1k22n(k1,k2为常数),且a2,a3,a42成等差数列,则an_17在ABC中,a,b,c分别是角A,B,C的对边,若6a=4b=3c,则cosB=18若函数f(x)=x22x(x2,4),则f(x)的最小值是三、解答题19如图,矩形ABCD和梯形BEFC所在平面互相垂直,BECF,BCCF,EF=2,BE=3,CF=4()求证:EF平面DCE;()当AB的长为何值时,二面角AEFC的大小为6020已知函数f(x)=ax2+bx+c,满足f(1)=,且3a2c2b(1)求证:a0时,的取值范围;(2)证明函数f(x)在区间(0,2)内至少有一个零点;(3)设x1,x2是函数f(x)的两个零点,求|x1x2|的取值范围 21(本题满分12分)在中,已知角所对的边分别是,边,且,又的面积为,求的值22(1)化简:(2)已知tan=3,计算 的值23(本小题满分12分)已知且过点的直线与线段有公共点, 求直线的斜率的取值范围.24等差数列an的前n项和为Sna3=2,S8=22(1)求an的通项公式;(2)设bn=,求数列bn的前n项和Tn北屯市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】解:由三视图可知:该几何体是如图所示的三棱锥,其中侧面PAC面ABC,PAC是边长为2的正三角形,ABC是边AC=2,边AC上的高OB=1,PO=为底面上的高于是此几何体的表面积S=SPAC+SABC+2SPAB=2+21+2=+1+故选:D【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状2 【答案】【解析】考点:球与几何体3 【答案】 B【解析】排列、组合的实际应用;空间中直线与直线之间的位置关系【专题】计算题;压轴题【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为、的4个仓库存放这8种化工产品,求安全存放的不同方法的种数首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况然后求出即可得到答案【解答】解:8种化工产品分4组,设四棱锥的顶点是P,底面四边形的个顶点为A、B、C、D分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)那么安全存放的不同方法种数为2A44=48故选B【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖4 【答案】D【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差,这是一个易错点,两个向量的和(点是的中点),另外,要选好基底向量,如本题就要灵活使用向量,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几何意义等.5 【答案】 D【解析】解:y=x1在区间(0,+)上为减函数,y=()x是减函数,y=x+,在(0,1)是减函数,(1,+)上为,增函数,y=lnx在区间(0,+)上为增函数,A,B,C不正确,D正确,故选:D【点评】本题考查了基本的函数的单调区间,属于基本题目,关键掌握好常见的函数的单调区间6 【答案】B7 【答案】A【解析】试题分析:由方程,两边平方得,即,所以方程表示的轨迹为一个圆,故选A.考点:曲线的方程.8 【答案】C【解析】解;f(x)=f(x)k1,k1,即k1,当x=时,f()+1k=,即f()1=故f(),所以f(),一定出错,故选:C9 【答案】C【解析】解:,=(3,5)故选:C【点评】本题考查向量的基本运算,向量的坐标求法,考查计算能力10【答案】A【解析】解:设回归直线方程=0.7x+a,由样本数据可得, =4.5, =3.5因为回归直线经过点(,),所以3.5=0.74.5+a,解得a=0.35故选A【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键11【答案】C【解析】解:根据几何体的三视图,得;该几何体是一半圆台中间被挖掉一半圆柱,其表面积为S=(2+8)424+(4212)+(4)+8=12+24故选:C【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目12【答案】A【解析】解:线段AB在平面内,直线AB上所有的点都在平面内,直线AB与平面的位置关系:直线在平面内,用符号表示为:AB故选A【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力公理一:如果一条线上的两个点在平面上则该线在平面上二、填空题13【答案】m1 【解析】解:若命题“xR,x22x+m0”是假命题,则命题“xR,x22x+m0”是真命题,即判别式=44m0,解得m1,故答案为:m114【答案】7.5 【解析】解:由表格可知=9, =4,这组数据的样本中心点是(9,4),根据样本中心点在线性回归直线=0.7x+上,4=0.79+,=2.3,这组数据对应的线性回归方程是=0.7x2.3,x=14,=7.5,故答案为:7.5【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错15【答案】 【解析】解:由MP,OM分别为角的正弦线、余弦线,如图,OM0MP故答案为:【点评】本题的考点是三角函数线,考查用作图的方法比较三角函数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小16【答案】【解析】当n1时,a1S1k12k2,当n2时,anSnSn1(k1k22n)(k1k22n1)k22n1,k12k2k220,即k1k20,又a2,a3,a42成等差数列2a3a2a42,即8k22k28k22.由联立得k11,k21,an2n1.答案:2n117【答案】 【解析】解:在ABC中,6a=4b=3cb=,c=2a,由余弦定理可得cosB=故答案为:【点评】本题考查余弦定理在解三角形中的应用,用a表示b,c是解决问题的关键,属于基础题18【答案】0 【解析】解:f(x)=x22x=(x1)21,其图象开口向上,对称抽为:x=1,所以函数f(x)在2,4上单调递增,所以f(x)的最小值为:f(2)=2222=0故答案为:0【点评】本题考查二次函数在闭区间上的最值问题,一般运用数形结合思想进行处理三、解答题19【答案】 【解析】证明:()在BCE中,BCCF,BC=AD=,BE=3,EC=,在FCE中,CF2=EF2+CE2,EFCE由已知条件知,DC平面EFCB,DCEF,又DC与EC相交于C,EF平面DCE解:()方法一:过点B作BHEF交FE的延长线于H,连接AH由平面ABCD平面BEFC,平面ABCD平面BEFC=BC,ABBC,得AB平面BEFC,从而AHEF所以AHB为二面角AEFC的平面角在RtCEF中,因为EF=2,CF=4EC=CEF=90,由CEBH,得BHE=90,又在RtBHE中,BE=3,由二面角AEFC的平面角AHB=60,在RtAHB中,解得,所以当时,二面角AEFC的大小为60方法二:如图,以点C为坐标原点,以CB,CF和CD分别作为x轴,y轴和z轴,建立空间直角坐标系Cxyz设AB=a(a0),则C(0,0,0),A(,0,a),B(,0,0),E(,3,0),F(0,4,0)从而,设平面AEF的法向量为,由得,取x=1,则,即,不妨设平面EFCB的法向量为,由条件,得解得所以当时,二面角AEFC的大小为60【点评】本题考查的知识点是用空间向量求平面间的夹角,其中(I)的关键是熟练掌握线线垂直、线面垂直与面面垂直的之间的相互转化,(II)的关键是建立空间坐标系,将二面角问题,转化为向量的夹角问题20【答案】【解析】解:(1)f(1)=a+b+c=,3a+2b+2c=0又3a2c2b,故3a0,2b0,从而a0,b0,又2c=3a2b及3a2c2b知3a3a2b2ba0,332,即3(2)根据题意有f(0)=0,f(2)=4a+2b+c=(3a+2b+2c)+ac=ac下面对c的正负情况进行讨论:当c0时,a0,f(0)=c0,f(1)=0所以函数f(x)在区间(0,1)内至少有一个零点;当c0时,a0,f(1)=0,f(2)=ac0所以函数f(x)在区间(1,2)内至少有一个零点;综合得函数f(x)在区间(0,2)内至少有一个零点;(3)x1,x2是函数f(x)的两个零点x1,x2是方程ax2+bx+c=0的两根故x1+x2=,x1x2=从而|x1x2|=3,|x1x2|【点评】本题考查了二次函数的性质,对于二次函数要注意数形结合的应用,注意抓住二次函数的开口方向,对称轴,以及判别式的考虑;同时考查了函数的零点与方程根的关系,函数的零点等价于对应方程的根,等价于函数的图象与x轴交点的横坐标,解题时要注意根据题意合理的选择转化属于中档题21【答案】【解析】试题解析:由可得,即.,.,.又的面积为,即,.又由余弦定理可得,.1考点:解三角形问题【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到两角和与两角差的正切函数公式、三角形的面积、正弦定理和余弦定理,以及特殊角的三角函数值等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,其中熟练掌握基本公式和灵活运用公式是解答本题的关键,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论