




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷荆州市二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知a,b是实数,则“a2bab2”是“”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件 2 抛物线y=x2的焦点坐标为( )A(0,)B(,0)C(0,4)D(0,2)3 已知直线l平面,直线m平面,有下面四个命题:(1)lm,(2)lm,(3)lm,(4)lm,其中正确命题是( )A(1)与(2)B(1)与(3)C(2)与(4)D(3)与(4)4 在中,若,则( )A B C. D5 PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是据某地某日早7点至晚8点甲、乙两个PM2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )A甲B乙C甲乙相等D无法确定6 是第四象限角,则sin=( )ABCD7 设函数,若对任意,都存在,使得,则实数的最大值为( )A B C. D48 已知,其中是虚数单位,则的虚部为( )A B C D【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.9 若变量x,y满足:,且满足(t+1)x+(t+2)y+t=0,则参数t的取值范围为( )A2tB2tC2tD2t10函数f(x)=1xlnx的零点所在区间是( )A(0,)B(,1)C(1,2)D(2,3)11如图,一个底面半径为R的圆柱被与其底面所成角是30的平面所截,截面是一个椭圆,则该椭圆的离心率是( )ABCD12如图所示,在平行六面体ABCDA1B1C1D1中,点E为上底面对角线A1C1的中点,若=+x+y,则( ) Ax=Bx=Cx=Dx=二、填空题13已知点E、F分别在正方体的棱上,且,则面AEF与面ABC所成的二面角的正切值等于 .14已知数列1,a1,a2,9是等差数列,数列1,b1,b2,b3,9是等比数列,则的值为15椭圆的两焦点为F1,F2,一直线过F1交椭圆于P、Q,则PQF2的周长为16将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为17直线l:(t为参数)与圆C:(为参数)相交所得的弦长的取值范围是18为了近似估计的值,用计算机分别产生90个在1,1的均匀随机数x1,x2,x90和y1,y2,y90,在90组数对(xi,yi)(1i90,iN*)中,经统计有25组数对满足,则以此估计的值为三、解答题19(理)设函数f(x)=(x+1)ln(x+1)(1)求f(x)的单调区间;(2)若对所有的x0,均有f(x)ax成立,求实数a的取值范围 20等差数列an 中,a1=1,前n项和Sn满足条件,()求数列an 的通项公式和Sn;()记bn=an2n1,求数列bn的前n项和Tn21已知f(x)=(1+x)m+(1+2x)n(m,nN*)的展开式中x的系数为11(1)求x2的系数取最小值时n的值(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和22已知:函数f(x)=log2,g(x)=2ax+1a,又h(x)=f(x)+g(x)(1)当a=1时,求证:h(x)在x(1,+)上单调递增,并证明函数h(x)有两个零点;(2)若关于x的方程f(x)=log2g(x)有两个不相等实数根,求a的取值范围23已知等差数列an,满足a3=7,a5+a7=26()求数列an的通项an;()令bn=(nN*),求数列bn的前n项和Sn24如图:等腰梯形ABCD,E为底AB的中点,AD=DC=CB=AB=2,沿ED折成四棱锥ABCDE,使AC=(1)证明:平面AED平面BCDE;(2)求二面角EACB的余弦值 荆州市二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:由a2bab2得ab(ab)0,若ab0,即ab,则ab0,则成立,若ab0,即ab,则ab0,则a0,b0,则成立,若则,即ab(ab)0,即a2bab2成立,即“a2bab2”是“”的充要条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键2 【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,焦点坐标为(0,2)故选:D【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键3 【答案】B【解析】解:直线l平面,l平面,又直线m平面,lm,故(1)正确;直线l平面,l平面,或l平面,又直线m平面,l与m可能平行也可能相交,还可以异面,故(2)错误;直线l平面,lm,m,直线m平面,故(3)正确;直线l平面,lm,m或m,又直线m平面,则与可能平行也可能相交,故(4)错误;故选B【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键4 【答案】B【解析】考点:正弦定理的应用.5 【答案】A【解析】解:根据茎叶图中的数据可知,甲地的数据都集中在0.06和0.07之间,数据分别比较稳定,而乙地的数据分布比较分散,不如甲地数据集中,甲地的方差较小故选:A【点评】本题 考查茎叶图的识别和判断,根据茎叶图中数据分布情况,即可确定方差的大小,比较基础6 【答案】B【解析】解:是第四象限角,sin=,故选B【点评】已知某角的一个三角函数值,求该角的其它三角函数值,应用平方关系、倒数关系、商的关系,这是三角函数计算题中较简单的,容易出错的一点是角的范围不确定时,要讨论7 【答案】A111.Com【解析】试题分析:设的值域为,因为函数在上的值域为,所以,因此至少要取遍中的每一个数,又,于是,实数需要满足或,解得考点:函数的性质.【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。首先求出,再利用转化思想将命题条件转化为,进而转化为至少要取遍中的每一个数,再利用数形结合思想建立不等式组:或,从而解得8 【答案】B【解析】由复数的除法运算法则得,所以的虚部为.9 【答案】C【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由(t+1)x+(t+2)y+t=0得t(x+y+1)+x+2y=0,由,得,即(t+1)x+(t+2)y+t=0过定点M(2,1),则由图象知A,B两点在直线两侧和在直线上即可,即2(t+2)+t2(t+1)+3(t+2)+t0,即(3t+4)(2t+4)0,解得2t,即实数t的取值范围为是2,故选:C【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键综合性较强,属于中档题10【答案】C【解析】解:f(1)=10,f(2)=12ln2=ln0,函数f(x)=1xlnx的零点所在区间是(1,2)故选:C【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反11【答案】A【解析】解:因为底面半径为R的圆柱被与底面成30的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R,长半轴为: =,a2=b2+c2,c=,椭圆的离心率为:e=故选:A【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力12【答案】A【解析】解:根据题意,得;=+(+)=+=+,又=+x+y,x=,y=,故选:A【点评】本题考查了空间向量的应用问题,是基础题目二、填空题13【答案】【解析】延长EF交BC的延长线于P,则AP为面AEF与面ABC的交线,因为,所以为面AEF与面ABC所成的二面角的平面角。14【答案】 【解析】解:已知数列1,a1,a2,9是等差数列,a1+a2 =1+9=10数列1,b1,b2,b3,9是等比数列, =19,再由题意可得b2=1q20 (q为等比数列的公比),b2=3,则=,故答案为【点评】本题主要考查等差数列、等比数列的定义和性质应用,属于中档题15【答案】20 【解析】解:a=5,由椭圆第一定义可知PQF2的周长=4aPQF2的周长=20,故答案为20【点评】作出草图,结合图形求解事半功倍16【答案】4+ 【解析】解:作出正四棱柱的对角面如图,底面边长为6,BC=,球O的半径为3,球O1 的半径为1,则,在RtOMO1中,OO1=4,=,正四棱柱容器的高的最小值为4+故答案为:4+【点评】本题考查球的体积和表面积,考查空间想象能力和思维能力,是中档题17【答案】4,16 【解析】解:直线l:(t为参数),化为普通方程是=,即y=tanx+1;圆C的参数方程(为参数),化为普通方程是(x2)2+(y1)2=64;画出图形,如图所示;直线过定点(0,1),直线被圆截得的弦长的最大值是2r=16,最小值是2=2=2=4弦长的取值范围是4,16故答案为:4,16【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题18【答案】 【解析】设A(1,1),B(1,1),则直线AB过原点,且阴影面积等于直线AB与圆弧所围成的弓形面积S1,由图知,又,所以【点评】本题考查了随机数的应用及弓形面积公式,属于中档题三、解答题19【答案】 【解析】解:(1)由f(x)=ln(x+1)+10得,f(x)的增区间为,减区间为(2)令g(x)=(x+1)ln(x+1)ax“不等式f(x)ax在x0时恒成立”“g(x)g(0)在x0时恒成立”g(x)=ln(x+1)+1a=0x=ea11当x(1,ea11)时,g(x)0,g(x)为减函数当x(ea11,+)时,g(x)0,g(x)为增函数“g(x)0在x0时恒成立”“ea110”,即ea1e0,即a10,即a1故a的取值范围是(,1 20【答案】 【解析】解:()设等差数列的公差为d,由=4得=4,所以a2=3a1=3且d=a2a1=2,所以an=a1+(n1)d=2n1,=()由bn=an2n1,得bn=(2n1)2n1所以Tn=1+321+522+(2n1)2n1 2Tn=2+322+523+(2n3)2n1+(2n1)2n 得:Tn=1+22+222+22n1(2n1)2n=2(1+2+22+2n1)(2n1)2n1=2(2n1)2n1=2n(32n)3Tn=(2n3)2n+3【点评】本题主要考查数列求和的错位相减,错位相减法适用于通项为一等差数列乘一等比数列组成的新数列此方法是数列求和部分高考考查的重点及热点21【答案】 【解析】【专题】计算题【分析】(1)利用二项展开式的通项公式求出展开式的x的系数,列出方程得到m,n的关系;利用二项展开式的通项公式求出x2的系数,将m,n的关系代入得到关于m的二次函数,配方求出最小值(2)通过对x分别赋值1,1,两式子相加求出展开式中x的奇次幂项的系数之和【解答】解:(1)由已知Cm1+2Cn1=11,m+2n=11,x2的系数为Cm2+22Cn2=+2n(n1)=+(11m)(1)=(m)2+mN*,m=5时,x2的系数取得最小值22,此时n=3(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,f(x)=(1+x)5+(1+2x)3设这时f(x)的展开式为f(x)=a0+a1x+a2x2+a5x5,令x=1,a0+a1+a2+a3+a4+a5=25+33,令x=1,a0a1+a2a3+a4a5=1,两式相减得2(a1+a3+a5)=60,故展开式中x的奇次幂项的系数之和为30【点评】本题考查利用二项展开式的通项公式求二项展开式的特殊项问题;利用赋值法求二项展开式的系数和问题22【答案】 【解析】解:(1)证明:h(x)=f(x)+g(x)=log2+2x,=log2(1)+2x;y=1在(1,+)上是增函数,故y=log2(1)在(1,+)上是增函数;又y=2x在(1,+)上是增函数;h(x)在x(1,+)上单调递增;同理可证,h(x)在(,1)上单调递增;而h(1.1)=log221+2.20,h(2)=log23+40;故h(x)在(1,+)上有且仅有一个零点,同理可证h(x)在(,1)上有且仅有一个零点,故函数h(x)有两个零点;(2)由题意,关于x的方程f(x)=log2g(x)有两个不相等实数根可化为1=2ax+1a在(,1)(1,+)上有两个不相等实数根;故a=;结合函数a=的图象可得,a0;即1a0【点评】本题考查了复合函数的单调性的证明与函数零点的判断,属于中档题23【答案】 【解析】解:()设an的首项为a1,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电商直播基地建设2025年新型城镇化建设可行性研究报告
- 门窗安全施工方案样本
- 电商直播基地与农产品上行研究报告
- 2025年职业健康知识考核试题及答案
- 2025年铁路线路工技能鉴定考试题库(附答案)
- 2025年公务员考试时事政治题及答案(含知识点)
- 监管病房工程施工方案(3篇)
- 砖砌体工程专项施工方案(3篇)
- 青蓝工程活动方案会序(3篇)
- 水果避雨棚工程方案设计(3篇)
- 工业生产许可证实施细则
- 小型服装店创业计划书
- 中学宿舍卫生管理制度
- 少吃糖预防蛀牙
- 2024年我国蚕桑产业发展态势与未来发展建议
- 广西壮族自治区三级皮肤病专科医院评审标准实施细则
- 《实验设计与数据分析》课件
- 2024年大学生乡村医生招聘笔试真题
- 初中地理跨学科教学的实践与思考
- 2025年江西庐山交通索道公司招聘笔试参考题库含答案解析
- 特殊学生档案
评论
0/150
提交评论