




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
细河区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 高三年上学期期末考试中,某班级数学成绩的频率分布直方图如图所示,数据分组依次如下:70,90),90,110),100,130),130,150),估计该班级数学成绩的平均分等于( )A112B114C116D1202 在定义域内既是奇函数又是减函数的是( )Ay=By=x+Cy=x|x|Dy=3 在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是()A最多可以购买4份一等奖奖品 B最多可以购买16份二等奖奖品C购买奖品至少要花费100元 D共有20种不同的购买奖品方案4 已知函数f(x)=ax1+logax在区间1,2上的最大值和最小值之和为a,则实数a为( )ABC2D45 已知向量=(1,2),=(m,1),如果向量与平行,则m的值为( )ABC2D26 已知x1,则函数的最小值为( )A4B3C2D17 函数f(x)=sinx(0)在恰有11个零点,则的取值范围( )ACD时,函数f(x)的最大值与最小值的和为( )Aa+3B6C2D3a8 已知,其中i为虚数单位,则a+b=( )A1B1C2D39 函数f(x)=x22ax,x1,+)是增函数,则实数a的取值范围是( )ARB1,+)C(,1D2,+)10若函数y=x2+bx+3在0,+)上是单调函数,则有( )Ab0Bb0Cb0Db011设集合A=x|x2|2,xR,B=y|y=x2,1x2,则R(AB)等于( )ARBx|xR,x0C0D12已知xR,命题“若x20,则x0”的逆命题、否命题和逆否命题中,正确命题的个数是( )A0B1C2D3二、填空题13等比数列an的公比q=,a6=1,则S6=14不等式的解集为R,则实数m的范围是 15命题“xR,2x23ax+90”为假命题,则实数a的取值范围为 16函数在点处的切线的斜率是 .17正方体ABCDA1B1C1D1中,平面AB1D1和平面BC1D的位置关系为18log3+lg25+lg47(9.8)0=三、解答题19ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a()求;()若c2=b2+a2,求B20已知函数f(x)=,求不等式f(x)4的解集21已知函数f(x)=xlnx,求函数f(x)的最小值22已知圆的极坐标方程为24cos()+6=0(1)将极坐标方程化为普通方程;(2)若点P在该圆上,求线段OP的最大值和最小值 23(本题12分)正项数列满足(1)求数列的通项公式;(2)令,求数列的前项和为.24设F是抛物线G:x2=4y的焦点(1)过点P(0,4)作抛物线G的切线,求切线方程;(2)设A,B为抛物线上异于原点的两点,且满足FAFB,延长AF,BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值细河区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:根据频率分布直方图,得;该班级数学成绩的平均分是=800.00520+1000.01520+1200.0220+1400.0120=114故选:B【点评】本题考查了根据频率分布直方图,求数据的平均数的应用问题,是基础题目2 【答案】C【解析】解:A.在定义域内没有单调性,该选项错误;B.时,y=,x=1时,y=0;该函数在定义域内不是减函数,该选项错误;Cy=x|x|的定义域为R,且(x)|x|=x|x|=(x|x|);该函数为奇函数;该函数在0,+),(,0)上都是减函数,且02=02;该函数在定义域R上为减函数,该选项正确;D.;0+101;该函数在定义域R上不是减函数,该选项错误故选:C【点评】考查反比例函数的单调性,奇函数的定义及判断方法,减函数的定义,以及分段函数单调性的判断,二次函数的单调性3 【答案】D【解析】【知识点】线性规划【试题解析】设购买一、二等奖奖品份数分别为x,y,则根据题意有:,作可行域为:A(2,6),B(4,12),C(2,16)在可行域内的整数点有:(2,6),(2,7),(2,16),(3,9),(3,10),(3,14),(4,12),共11+6+1=18个。其中,x最大为4,y最大为16最少要购买2份一等奖奖品,6份二等奖奖品,所以最少要花费100元。所以A、B、C正确,D错误。故答案为:D4 【答案】A【解析】解:分两类讨论,过程如下:当a1时,函数y=ax1 和y=logax在1,2上都是增函数,f(x)=ax1+logax在1,2上递增,f(x)max+f(x)min=f(2)+f(1)=a+loga2+1=a,loga2=1,得a=,舍去;当0a1时,函数y=ax1 和y=logax在1,2上都是减函数,f(x)=ax1+logax在1,2上递减,f(x)max+f(x)min=f(2)+f(1)=a+loga2+1=a,loga2=1,得a=,符合题意;故选A5 【答案】B【解析】解:向量,向量与平行,可得2m=1解得m=故选:B6 【答案】B【解析】解:x1x10由基本不等式可得, 当且仅当即x1=1时,x=2时取等号“=”故选B7 【答案】A【解析】ACD恰有11个零点,可得56,求得1012,故选:A8 【答案】B【解析】解:由得a+2i=bi1,所以由复数相等的意义知a=1,b=2,所以a+b=1另解:由得ai+2=b+i(a,bR),则a=1,b=2,a+b=1故选B【点评】本题考查复数相等的意义、复数的基本运算,是基础题9 【答案】C【解析】解:由于f(x)=x22ax的对称轴是直线x=a,图象开口向上,故函数在区间(,a为减函数,在区间a,+)上为增函数,又由函数f(x)=x22ax,x1,+)是增函数,则a1故答案为:C10【答案】A【解析】解:抛物线f(x)=x2+bx+3开口向上,以直线x=为对称轴,若函数y=x2+bx+3在0,+)上单调递增函数,则0,解得:b0,故选:A【点评】本题考查二次函数的性质和应用,是基础题解题时要认真审题,仔细解答11【答案】B【解析】解:A=0,4,B=4,0,所以AB=0,R(AB)=x|xR,x0,故选B12【答案】C【解析】解:命题“若x20,则x0”的逆命题是“若x0,则x20”,是真命题;否命题是“若x20,则x0”,是真命题;逆否命题是“若x0,则x20”,是假命题;综上,以上3个命题中真命题的个数是2故选:C二、填空题13【答案】21 【解析】解:等比数列an的公比q=,a6=1,a1()5=1,解得a1=32,S6=21故答案为:2114【答案】 【解析】解:不等式,x28x+200恒成立可得知:mx2+2(m+1)x+9x+40在xR上恒成立显然m0时只需=4(m+1)24m(9m+4)0,解得:m或m所以m故答案为:15【答案】2a2【解析】解:原命题的否定为“xR,2x23ax+90”,且为真命题,则开口向上的二次函数值要想大于等于0恒成立,只需=9a24290,解得:2a2故答案为:2a2【点评】存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错所以,可以采用数学上正难则反的思想,去从它的反面即否命题去判定注意“恒成立”条件的使用16【答案】【解析】试题分析:,则,故答案为. 考点:利用导数求曲线上某点切线斜率.17【答案】平行 【解析】解:AB1C1D,AD1BC1,AB1平面AB1D1,AD1平面AB1D1,AB1AD1=AC1D平面BC1D,BC1平面BC1D,C1DBC1=C1由面面平行的判定理我们易得平面AB1D1平面BC1D故答案为:平行【点评】本题考查的知识点是平面与平面之间的位置关系,在判断线与面的平行与垂直关系时,正方体是最常用的空间模型,大家一定要熟练掌握这种方法18【答案】 【解析】解:原式=+lg10021=+221=,故选:【点评】本题考查了对数的运算性质,属于基础题三、解答题19【答案】 【解析】解:()由正弦定理得,sin2AsinB+sinBcos2A=sinA,即sinB(sin2A+cos2A)=sinAsinB=sinA, =()由余弦定理和C2=b2+a2,得cosB=由()知b2=2a2,故c2=(2+)a2,可得cos2B=,又cosB0,故cosB=所以B=45【点评】本题主要考查了正弦定理和余弦定理的应用解题的过程主要是利用了正弦定理和余弦定理对边角问题进行了互化20【答案】 【解析】解:函数f(x)=,不等式f(x)4,当x1时,2x+44,解得1x0;当x1时,x+14解得3x1综上x(3,0)不等式的解集为:(3,0)21【答案】 【解析】解:函数的定义域为(0,+)求导函数,可得f(x)=1+lnx令f(x)=1+lnx=0,可得0x时,f(x)0,x时,f(x)0时,函数取得极小值,也是函数的最小值f(x)min=【点评】本题考查导数知识的运用,考查函数的最值,考查学生分析解决问题的能力,属于中档题22【答案】 【解析】解:(1)24cos()+6=0,展开为:24(cos+sin)+6=0化为:x2+y24x4y+6=0(2)由x2+y24x4y+6=0可得:(x2)2+(y2)2=2圆心C(2,2),半径r=|OP|=2线段OP的最大值为2+=3最小值为2= 23【答案】(1);(2).考点:1一元二次方程;2裂项相消法求和24【答案】 【解析】解:(1)设切点由,知抛物线在Q点处的切线斜率为,故所求切线方程为即y=x0xx02因为点P(0,4)在切线上所以,解得x0=4所求切线方程为y=2x4(2)设A(x1,y1),C(x2,y2)由题意知,直线AC的斜率k存在,由对称性,不妨设k0因直线AC过焦点F(0,1),所以直线AC的方程为y=kx+1点A,C的坐标满足方程组,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年养老金制度在2025年对金融市场投资策略调整与投资机会研究报告
- 2025年企业可持续发展目标(SDGs)与可持续发展能力评估报告
- 农业生物技术在种业创新中的应用与突破产业竞争力分析报告
- 激光美白相关知识及课件
- 二零二五年度机关事业单位社保代征代缴合作协议书
- 二零二五年度智能办公软件定制开发与授权使用合同
- 二零二五年水利工程安全防护施工合同规范样本
- 二零二五年度高性能涂料建筑工程劳务分包服务合同
- 2025版高空通信工程劳务分包合同变更与补充协议范本
- 2025版节能环保砌砖施工合同
- 校园基孔肯雅热防控措施课件
- (2025年标准)离职手协议书
- 2025年团场人员考试题库
- 班组质量管理
- 2025年四川省建筑施工企业安管人员考试(企业主要负责人·A类)历年参考题库含答案详解(5卷)
- 实战能力评估模型-洞察及研究
- 超声引导髂筋膜阻滞技术
- 铁路建设工程质量安全监督管理办法
- 数字经济与市场结构-洞察及研究
- DB42T 1496-2019 公路边坡监测技术规程
- 学校餐厅试吃活动方案
评论
0/150
提交评论