石棉县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
石棉县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
石棉县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
石棉县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
石棉县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷石棉县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 设f(x)与g(x)是定义在同一区间a,b上的两个函数,若函数y=f(x)g(x)在xa,b上有两个不同的零点,则称f(x)和g(x)在a,b上是“关联函数”,区间a,b称为“关联区间”若f(x)=x23x+4与g(x)=2x+m在0,3上是“关联函数”,则m的取值范围为( )A(,2B1,0C(,2D(,+)2 已知命题p:存在x00,使21,则p是( )A对任意x0,都有2x1B对任意x0,都有2x1C存在x00,使21D存在x00,使213 ABC的三内角A,B,C所对边长分别是a,b,c,设向量,若,则角B的大小为( )ABCD4 将函数f(x)=sin2x的图象向右平移个单位,得到函数y=g(x)的图象,则它的一个对称中心是( )ABCD5 已知双曲线=1(a0,b0)的左右焦点分别为F1,F2,若双曲线右支上存在一点P,使得F2关于直线PF1的对称点恰在y轴上,则该双曲线的离心率e的取值范围为( )A1eBeCeD1e6 平面与平面平行的条件可以是( )A内有无穷多条直线与平行B直线a,aC直线a,直线b,且a,bD内的任何直线都与平行7 阅读如图所示的程序框图,运行相应的程序若该程序运行后输出的结果不大于20,则输入的整数i的最大值为( )A3B4C5D68 在中,那么一定是( )A锐角三角形 B直角三角形 C等腰三角形 D等腰三角形或直角三角形9 在复平面上,复数z=a+bi(a,bR)与复数i(i2)关于实轴对称,则a+b的值为( )A1B3C3D210空间直角坐标系中,点A(2,1,3)关于点B(1,1,2)的对称点C的坐标为( )A(4,1,1)B(1,0,5)C(4,3,1)D(5,3,4)11过抛物线y2=4x焦点的直线交抛物线于A,B两点,若|AB|=10,则AB的中点到y轴的距离等于( )A1B2C3D412设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:若m,n,则mn;若,m,则m;若m,n,则mn;若,m,则m;其中正确命题的序号是( )ABCD二、填空题13设复数z满足z(23i)=6+4i(i为虚数单位),则z的模为14如果实数满足等式,那么的最大值是 15抛物线y2=4x的焦点为F,过F且倾斜角等于的直线与抛物线在x轴上方的曲线交于点A,则AF的长为16由曲线y=2x2,直线y=4x2,直线x=1围成的封闭图形的面积为17如图是函数y=f(x)的导函数y=f(x)的图象,对此图象,有如下结论:在区间(2,1)内f(x)是增函数;在区间(1,3)内f(x)是减函数;在x=2时,f(x)取得极大值;在x=3时,f(x)取得极小值其中正确的是18递增数列an满足2an=an1+an+1,(nN*,n1),其前n项和为Sn,a2+a8=6,a4a6=8,则S10=三、解答题19已知函数f(x)=+lnx1(a是常数,e=2.71828)(1)若x=2是函数f(x)的极值点,求曲线y=f(x)在点(1,f(1)处的切线方程;(2)当a=1时,方程f(x)=m在x,e2上有两解,求实数m的取值范围;(3)求证:nN*,ln(en)1+ 20(本小题满分12分)的内角所对的边分别为,垂直.(1)求的值;(2)若,求的面积的最大值.21设函数f(x)=mx2mx1(1)若对一切实数x,f(x)0恒成立,求m的取值范围;(2)对于x1,3,f(x)m+5恒成立,求m的取值范围 22已知二次函数f(x)=x2+2bx+c(b,cR)(1)若函数y=f(x)的零点为1和1,求实数b,c的值;(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(3,2),(0,1)内,求实数b的取值范围23(本题满分15分)正项数列满足,(1)证明:对任意的,;(2)记数列的前项和为,证明:对任意的,【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力.24某市出租车的计价标准是4km以内10元(含4km),超过4km且不超过18km的部分1.5元/km,超出18km的部分2元/km(1)如果不计等待时间的费用,建立车费y元与行车里程x km的函数关系式;(2)如果某人乘车行驶了30km,他要付多少车费?石棉县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:f(x)=x23x+4与g(x)=2x+m在0,3上是“关联函数”,故函数y=h(x)=f(x)g(x)=x25x+4m在0,3上有两个不同的零点,故有,即,解得m2,故选A【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题2 【答案】A【解析】解:命题p:存在x00,使21为特称命题,p为全称命题,即对任意x0,都有2x1故选:A3 【答案】B【解析】解:若,则(a+b)(sinBsinA)sinC(a+c)=0,由正弦定理可得:(a+b)(ba)c(a+c)=0,化为a2+c2b2=ac,cosB=,B(0,),B=,故选:B【点评】本题考查了正弦定理与余弦定理的应用、向量数量积运算性质,考查了推理能力与计算能力,是一道基础题4 【答案】D【解析】解:函数y=sin2x的图象向右平移个单位,则函数变为y=sin2(x)=sin(2x);考察选项不难发现:当x=时,sin(2)=0;(,0)就是函数的一个对称中心坐标故选:D【点评】本题是基础题,考查三角函数图象的平移变换,函数的对称中心坐标问题,考查计算能力,逻辑推理能力,常考题型5 【答案】B【解析】解:设点F2(c,0),由于F2关于直线PF1的对称点恰在y轴上,不妨设M在正半轴上,由对称性可得,MF1=F1F2=2c,则MO=c,MF1F2=60,PF1F2=30,设直线PF1:y=(x+c),代入双曲线方程,可得,(3b2a2)x22ca2xa2c23a2b2=0,则方程有两个异号实数根,则有3b2a20,即有3b2=3c23a2a2,即ca,则有e=故选:B6 【答案】D【解析】解:当内有无穷多条直线与平行时,a与可能平行,也可能相交,故不选A当直线a,a时,a与可能平行,也可能相交,故不选 B当直线a,直线b,且a 时,直线a 和直线 b可能平行,也可能是异面直线,故不选 C 当内的任何直线都与 平行时,由两个平面平行的定义可得,这两个平面平行,故选 D【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况7 【答案】B【解析】解:模拟执行程序框图,可得s=0,n=0满足条件ni,s=2,n=1满足条件ni,s=5,n=2满足条件ni,s=10,n=3满足条件ni,s=19,n=4满足条件ni,s=36,n=5所以,若该程序运行后输出的结果不大于20,则输入的整数i的最大值为4,有n=4时,不满足条件ni,退出循环,输出s的值为19故选:B【点评】本题主要考查了循环结构的程序框图,属于基础题8 【答案】D【解析】试题分析:在中,化简得,解得,即,所以或,即或,所以三角形为等腰三角形或直角三角形,故选D考点:三角形形状的判定【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出,从而得到或是试题的一个难点,属于中档试题9 【答案】A【解析】解:z=a+bi(a,bR)与复数i(i2)=12i关于实轴对称,a+b=21=1,故选:A【点评】本题考查复数的运算,注意解题方法的积累,属于基础题10【答案】C【解析】解:设C(x,y,z),点A(2,1,3)关于点B(1,1,2)的对称点C,解得x=4,y=3,z=1,C(4,3,1)故选:C11【答案】D【解析】解:抛物线y2=4x焦点(1,0),准线为 l:x=1,设AB的中点为E,过 A、E、B分别作准线的垂线,垂足分别为 C、G、D,EF交纵轴于点H,如图所示:则由EG为直角梯形的中位线知,EG=5,EH=EG1=4,则AB的中点到y轴的距离等于4故选D【点评】本题考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想12【答案】B【解析】解:由m、n是两条不同的直线,是三个不同的平面:在中:若m,n,则由直线与平面垂直得mn,故正确;在中:若,则,m,由直线垂直于平面的性质定理得m,故正确;在中:若m,n,则由直线与平面垂直的性质定理得mn,故正确;在中:若,m,则m或m,故错误故选:B二、填空题13【答案】2 【解析】解:复数z满足z(23i)=6+4i(i为虚数单位),z=,|z|=2,故答案为:2【点评】本题主要考查复数的模的定义,复数求模的方法,利用了两个复数商的模等于被除数的模除以除数的模,属于基础题14【答案】【解析】 考点:直线与圆的位置关系的应用. 1【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方法,本题的解答中把的最值转化为直线与圆相切是解答的关键,属于中档试题.15【答案】4 【解析】解:由已知可得直线AF的方程为y=(x1),联立直线与抛物线方程消元得:3x210x+3=0,解之得:x1=3,x2=(据题意应舍去),由抛物线定义可得:AF=x1+=3+1=4故答案为:4【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题16【答案】 【解析】解:由方程组 解得,x=1,y=2故A(1,2)如图,故所求图形的面积为S=11(2x2)dx11(4x2)dx=(4)=故答案为:【点评】本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题17【答案】 【解析】解:由 y=f(x)的图象可知,x(3,),f(x)0,函数为减函数;所以,在区间(2,1)内f(x)是增函数;不正确;在区间(1,3)内f(x)是减函数;不正确;x=2时,y=f(x)=0,且在x=2的两侧导数值先正后负,在x=2时,f(x)取得极大值;而,x=3附近,导函数值为正,所以,在x=3时,f(x)取得极小值不正确故答案为【点评】本题考察了函数的单调性,导数的应用,是一道基础题18【答案】35 【解析】解:2an=an1+an+1,(nN*,n1),数列an为等差数列,又a2+a8=6,2a5=6,解得:a5=3,又a4a6=(a5d)(a5+d)=9d2=8,d2=1,解得:d=1或d=1(舍去)an=a5+(n5)1=3+(n5)=n2a1=1,S10=10a1+=35故答案为:35【点评】本题考查数列的求和,判断出数列an为等差数列,并求得an=2n1是关键,考查理解与运算能力,属于中档题三、解答题19【答案】 【解析】解:(1)因为x=2是函数f(x)的极值点,所以a=2,则f(x)=,则f(1)=1,f(1)=1,所以切线方程为x+y2=0;(2)当a=1时,其中x,e2,当x,1)时,f(x)0;x(1,e2时,f(x)0,x=1是f(x)在,e2上唯一的极小值点,f(x)min=f(1)=0 又,综上,所求实数m的取值范围为m|0me2;(3)等价于,若a=1时,由(2)知f(x)=在1,+)上为增函数,当n1时,令x=,则x1,故f(x)f(1)=0,即,故即,即 20【答案】(1);(2)4【解析】试题分析:(1)由向量垂直知两向量的数量积为0,利用数量积的坐标运算公式可得关于的等式,从而可借助正弦定理化为边的关系,最后再余弦定理求得,由同角关系得;(2)由于已知边及角,因此在(1)中等式中由基本不等式可求得,从而由公式可得面积的最大值试题解析:(1),垂直,考点:向量的数量积,正弦定理,余弦定理,基本不等式11121【答案】 【解析】解:(1)当m=0时,f(x)=10恒成立,当m0时,若f(x)0恒成立,则解得4m0综上所述m的取值范围为(4,0(2)要x1,3,f(x)m+5恒成立,即恒成立令当 m0时,g(x)是增函数,所以g(x)max=g(3)=7m60,解得所以当m=0时,60恒成立当m0时,g(x)是减函数所以g(x)max=g(1)=m60,解得m6所以m0综上所述,【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键22【答案】 【解析】解:(1)1,1是函数y=f(x)的零点,解得b=0,c=1(2)f(1)=1+2b+c=0,所以c=12b令g(x)=f(x)+x+b=x2+(2b+1)x+b+c=x2+(2b+1)xb1,关于x的方程f(x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论