容城县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第1页
容城县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第2页
容城县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第3页
容城县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第4页
容城县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

容城县高中2018-2019学年上学期高三数学期末模拟试卷含答案班级_ 座号_ 姓名_ 分数_一、选择题1 已知不等式组表示的平面区域为,若内存在一点,使,则的取值范围为( )A B C D2 已知复数z满足(3+4i)z=25,则=( )A34iB3+4iC34iD3+4i3 直线l过点P(2,2),且与直线x+2y3=0垂直,则直线l的方程为( )A2x+y2=0B2xy6=0Cx2y6=0Dx2y+5=04 已知是球的球面上两点,为该球面上的动点,若三棱锥体积的最大值为,则球的体积为( )ABCD【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力5 设等差数列an的前n项和为Sn,已知S4=2,S5=0,则S6=( )A0B1C2D36 的内角,所对的边分别为,已知,则( )111A B或 C或 D7 圆()与双曲线的渐近线相切,则的值为( )A B C D【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力8 用一平面去截球所得截面的面积为2,已知球心到该截面的距离为1,则该球的体积是( )AB2C4D 9 下列函数中哪个与函数y=x相等( )Ay=()2By=Cy=Dy=10若函数f(x)=2sin(x+)对任意x都有f(+x)=f(x),则f()=( )A2或0B0C2或0D2或211如图,在正四棱锥SABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:EPBD;EPAC;EP面SAC;EP面SBD中恒成立的为( )ABCD12对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( )A92%B24%C56%D5.6%二、填空题13设f(x)是奇函数f(x)(xR)的导函数,f(2)=0,当x0时,xf(x)f(x)0,则使得f(x)0成立的x的取值范围是14将全体正整数排成一个三角形数阵:按照以上排列的规律,第n行(n3)从左向右的第3个数为15已知数列1,a1,a2,9是等差数列,数列1,b1,b2,b3,9是等比数列,则的值为16若函数f(x),g(x)满足:x(0,+),均有f(x)x,g(x)x成立,则称“f(x)与g(x)关于y=x分离”已知函数f(x)=ax与g(x)=logax(a0,且a1)关于y=x分离,则a的取值范围是17若全集,集合,则 。18命题:“xR,都有x31”的否定形式为三、解答题19已知数列an满足a1=a,an+1=(nN*)(1)求a2,a3,a4;(2)猜测数列an的通项公式,并用数学归纳法证明20如图,已知边长为2的等边PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点()试在棱AD上找一点N,使得CN平面AMP,并证明你的结论()证明:AMPM21已知集合A=x|1,xR,B=x|x22xm0()当m=3时,求;A(RB);()若AB=x|1x4,求实数m的值22已知椭圆+=1(ab0)的离心率为,且a2=2b(1)求椭圆的方程;(2)直线l:xy+m=0与椭圆交于A,B两点,是否存在实数m,使线段AB的中点在圆x2+y2=5上,若存在,求出m的值;若不存在,说明理由 23某市出租车的计价标准是4km以内10元(含4km),超过4km且不超过18km的部分1.5元/km,超出18km的部分2元/km(1)如果不计等待时间的费用,建立车费y元与行车里程x km的函数关系式;(2)如果某人乘车行驶了30km,他要付多少车费?24(本题满分14分)在中,角,所对的边分别为,已知(1)求角的大小; (2)若,求的取值范围【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力容城县高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1 【答案】A 【解析】解析:本题考查线性规划中最值的求法平面区域如图所示,先求的最小值,当时,在点取得最小值;当时,在点取得最小值若内存在一点,使,则有的最小值小于,或,选A2 【答案】B解析:(3+4i)z=25,z=34i=3+4i故选:B3 【答案】B【解析】解:直线x+2y3=0的斜率为,与直线x+2y3=0垂直的直线斜率为2,故直线l的方程为y(2)=2(x2),化为一般式可得2xy6=0故选:B【点评】本题考查直线的一般式方程和垂直关系,属基础题4 【答案】D【解析】当平面平面时,三棱锥的体积最大,且此时为球的半径设球的半径为,则由题意,得,解得,所以球的体积为,故选D5 【答案】D【解析】解:设等差数列an的公差为d,则S4=4a1+d=2,S5=5a1+d=0,联立解得,S6=6a1+d=3故选:D【点评】本题考查等差数列的求和公式,得出数列的首项和公差是解决问题的关键,属基础题6 【答案】B【解析】试题分析:由正弦定理可得: 或,故选B.考点:1、正弦定理的应用;2、特殊角的三角函数.7 【答案】C8 【答案】C【解析】解:用一平面去截球所得截面的面积为2,所以小圆的半径为: cm;已知球心到该截面的距离为1,所以球的半径为:,所以球的体积为: =4故选:C9 【答案】B【解析】解:A函数的定义域为x|x0,两个函数的定义域不同B函数的定义域为R,两个函数的定义域和对应关系相同,是同一函数C函数的定义域为R,y=|x|,对应关系不一致D函数的定义域为x|x0,两个函数的定义域不同故选B【点评】本题主要考查判断两个函数是否为同一函数,判断的标准是判断函数的定义域和对应关系是否一致,否则不是同一函数10【答案】D【解析】解:由题意:函数f(x)=2sin(x+),f(+x)=f(x),可知函数的对称轴为x=,根据三角函数的性质可知,当x=时,函数取得最大值或者最小值f()=2或2故选D11【答案】 A【解析】解:如图所示,连接AC、BD相交于点O,连接EM,EN在中:由异面直线的定义可知:EP与BD是异面直线,不可能EPBD,因此不正确;在中:由正四棱锥SABCD,可得SO底面ABCD,ACBD,SOACSOBD=O,AC平面SBD,E,M,N分别是BC,CD,SC的中点,EMBD,MNSD,而EMMN=M,平面EMN平面SBD,AC平面EMN,ACEP故正确在中:由同理可得:EM平面SAC,若EP平面SAC,则EPEM,与EPEM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直即不正确在中:由可知平面EMN平面SBD,EP平面SBD,因此正确故选:A【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养12【答案】C【解析】解:这次测验的优秀率(不小于80分)为0.03210+0.02410=0.56故这次测验的优秀率(不小于80分)为56%故选C【点评】在解决频率分布直方图时,一定注意频率分布直方图的纵坐标是二、填空题13【答案】(2,0)(2,+) 【解析】解:设g(x)=,则g(x)的导数为:g(x)=,当x0时总有xf(x)f(x)0成立,即当x0时,g(x)0,当x0时,函数g(x)为增函数,又g(x)=g(x),函数g(x)为定义域上的偶函数,x0时,函数g(x)是减函数,又g(2)=0=g(2),x0时,由f(x)0,得:g(x)g(2),解得:x2,x0时,由f(x)0,得:g(x)g(2),解得:x2,f(x)0成立的x的取值范围是:(2,0)(2,+)故答案为:(2,0)(2,+)14【答案】3+ 【解析】解:本小题考查归纳推理和等差数列求和公式前n1行共有正整数1+2+(n1)个,即个,因此第n行第3个数是全体正整数中第3+个,即为3+故答案为:3+15【答案】 【解析】解:已知数列1,a1,a2,9是等差数列,a1+a2 =1+9=10数列1,b1,b2,b3,9是等比数列, =19,再由题意可得b2=1q20 (q为等比数列的公比),b2=3,则=,故答案为【点评】本题主要考查等差数列、等比数列的定义和性质应用,属于中档题16【答案】(,+) 【解析】解:由题意,a1故问题等价于axx(a1)在区间(0,+)上恒成立构造函数f(x)=axx,则f(x)=axlna1,由f(x)=0,得x=loga(logae),xloga(logae)时,f(x)0,f(x)递增;0xloga(logae),f(x)0,f(x)递减则x=loga(logae)时,函数f(x)取到最小值,故有loga(logae)0,解得a故答案为:(,+)【点评】本题考查恒成立问题关键是将问题等价转化,从而利用导数求函数的最值求出参数的范围17【答案】|01【解析】,|01。18【答案】x0R,都有x031 【解析】解:因为全称命题的否定是特称命题所以,命题:“xR,都有x31”的否定形式为:命题:“x0R,都有x031”故答案为:x0R,都有x031【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查三、解答题19【答案】 【解析】解:(1)由an+1=,可得a2=,a3=,a4=(2)猜测an=(nN*)下面用数学归纳法证明:当n=1时,左边=a1=a,右边=a,猜测成立假设当n=k(kN*)时猜测成立,即ak=则当n=k+1时,ak+1=故当n=k+1时,猜测也成立由,可知,对任意nN*都有an=成立20【答案】 【解析】()解:在棱AD上找中点N,连接CN,则CN平面AMP;证明:因为M为BC的中点,四边形ABCD是矩形,所以CM平行且相等于DN,所以四边形MCNA为矩形,所以CNAM,又CN平面AMP,AM平面AMP,所以CN平面AMP()证明:过P作PECD,连接AE,ME,因为边长为2的等边PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点所以PE平面ABCD,CM=,所以PEAM,在AME中,AE=3,ME=,AM=,所以AE2=AM2+ME2,所以AMME,所以AM平面PME所以AMPM【点评】本题考查了线面平行的判定定理和线面垂直的判定定理的运用;正确利用已知条件得到线线关系是关键,体现了转化的思想21【答案】 【解析】解:(1)当m=3时,由x22x301x3,由11x5,AB=x|1x3;(2)若AB=x|1x4,A=(1,5),4是方程x22xm=0的一个根,m=8,此时B=(2,4),满足AB=(1,4)m=822【答案】【解析】解:(1)由题意得e=,a2=2b,a2b2=c2,解得a=,b=c=1故椭圆的方程为x2+=1;(2)设A(x1,y1),B(x2,y2),线段AB的中点为M(x0,y0)联立直线y=x+m与椭圆的方程得,即3x2+2mx+m22=0,=(2m)243(m22)0,即m23,x1+x2=,所以x0=,y0=x0+m=,即M(,)又因为M点在圆x2+y2=5上,可得()2+()2=5,解得m=3与m23矛盾故实数m不存在【点评】本题考查椭圆的方程的求法,注意运用离心

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论