




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
鱼峰区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若函数则的值为( )A5 B C D22 如图,在等腰梯形ABCD中,AB=2DC=2,DAB=60,E为AB的中点,将ADE与BEC分别沿ED、EC向上折起,使A、B重合于点P,则PDCE三棱锥的外接球的体积为( )ABCD3 随机变量x1N(2,1),x2N(4,1),若P(x13)=P(x2a),则a=( )A1B2C3D44 如图可能是下列哪个函数的图象( )Ay=2xx21By=Cy=(x22x)exDy=5 设是等比数列的前项和,则此数列的公比( )A-2或-1 B1或2 C.或2 D或-16 如图所示,在三棱锥的六条棱所在的直线中,异面直线共有( )111A2对 B3对 C4对 D6对7 如果ab,那么下列不等式中正确的是( )AB|a|b|Ca2b2Da3b38 若函数的图象关于直线对称,且当,时,则等于( )A B C. D9 已知函数y=x3+ax2+(a+6)x1有极大值和极小值,则a的取值范围是( )A1a2B3a6Ca3或a6Da1或a210设函数对一切实数都满足,且方程恰有6个不同的实根,则这6个实根的和为( )A. B. C. D.【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.11已知两点M(1,),N(4,),给出下列曲线方程:4x+2y1=0; x2+y2=3; +y2=1; y2=1在曲线上存在点P满足|MP|=|NP|的所有曲线方程是( )ABCD12若函数是偶函数,则函数的图象的对称轴方程是( )111.ComA B C D二、填空题13函数在区间上递减,则实数的取值范围是 1417已知函数f(x)是定义在R上的奇函数,且它的图象关于直线x=1对称15袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为16已知函数f(x)=,若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是17当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测的1564岁劳动人口所占比例:年份20302035204020452050年份代号t12345所占比例y6865626261根据上表,y关于t的线性回归方程为附:回归直线的斜率和截距的最小二乘估计公式分别为: =, =18圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线xy+1=0相交所得的弦长为,则圆的方程为三、解答题19已知函数y=x+有如下性质:如果常数t0,那么该函数在(0,上是减函数,在,+)上是增函数(1)已知函数f(x)=x+,x1,3,利用上述性质,求函数f(x)的单调区间和值域;(2)已知函数g(x)=和函数h(x)=x2a,若对任意x10,1,总存在x20,1,使得h(x2)=g(x1)成立,求实数a的值 20巳知二次函数f(x)=ax2+bx+c和g(x)=ax2+bx+clnx(abc0)()证明:当a0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;()在同一函数图象上取任意两个不同的点A(x1,y1),B(x2,y2),线段AB的中点C(x0,y0),记直线AB的斜率为k若f(x)满足k=f(x0),则称其为“K函数”判断函数f(x)=ax2+bx+c与g(x)=ax2+bx+clnx是否为“K函数”?并证明你的结论 21已知函数f(x)=()求函数f(x)单调递增区间;()在ABC中,角A,B,C的对边分别是a,b,c,且满足(2ac)cosB=bcosC,求f(A)的取值范围22已知f(x)是定义在R上的奇函数,当x0时,f(x)=()x(1)求当x0时f(x)的解析式;(2)画出函数f(x)在R上的图象;(3)写出它的单调区间23已知函数f(x)=lnxkx+1(kR)()若x轴是曲线f(x)=lnxkx+1一条切线,求k的值;()若f(x)0恒成立,试确定实数k的取值范围24(本小题满分12分)设f(x)x2axa2ln x(a0)(1)讨论f(x)的单调性;(2)是否存在a0,使f(x)e1,e2对于x1,e时恒成立,若存在求出a的值,若不存在说明理由鱼峰区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D111【解析】试题分析:.考点:分段函数求值2 【答案】C【解析】解:易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为,外接球的体积为,故选C【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题3 【答案】C【解析】解:随机变量x1N(2,1),图象关于x=2对称,x2N(4,1),图象关于x=4对称,因为P(x13)=P(x2a),所以32=4a,所以a=3,故选:C【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解4 【答案】 C【解析】解:A中,y=2xx21,当x趋向于时,函数y=2x的值趋向于0,y=x2+1的值趋向+,函数y=2xx21的值小于0,A中的函数不满足条件;B中,y=sinx是周期函数,函数y=的图象是以x轴为中心的波浪线,B中的函数不满足条件;C中,函数y=x22x=(x1)21,当x0或x2时,y0,当0x2时,y0;且y=ex0恒成立,y=(x22x)ex的图象在x趋向于时,y0,0x2时,y0,在x趋向于+时,y趋向于+;C中的函数满足条件;D中,y=的定义域是(0,1)(1,+),且在x(0,1)时,lnx0,y=0,D中函数不满足条件故选:C【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目5 【答案】D【解析】试题分析:当公比时,成立.当时,都不等于,所以, ,故选D. 考点:等比数列的性质.6 【答案】B【解析】试题分析:三棱锥中,则与、与、与都是异面直线,所以共有三对,故选B考点:异面直线的判定7 【答案】D【解析】解:若a0b,则,故A错误;若a0b且a,b互为相反数,则|a|=|b|,故B错误;若a0b且a,b互为相反数,则a2b2,故C错误;函数y=x3在R上为增函数,若ab,则a3b3,故D正确;故选:D【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题8 【答案】C【解析】考点:函数的图象与性质.【方法点晴】本题主要考查函数的图象与性质,涉及数形结合思想、函数与方程思想、转化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型首先利用数形结合思想和转化化归思想可得,解得,从而,再次利用数形结合思想和转化化归思想可得关于直线对称,可得,从而9 【答案】C【解析】解:由于f(x)=x3+ax2+(a+6)x1,有f(x)=3x2+2ax+(a+6)若f(x)有极大值和极小值,则=4a212(a+6)0,从而有a6或a3,故选:C【点评】本题主要考查函数在某点取得极值的条件属基础题10【答案】A.【解析】,的图象关于直线对称,个实根的和为,故选A.11【答案】 D【解析】解:要使这些曲线上存在点P满足|MP|=|NP|,需曲线与MN的垂直平分线相交MN的中点坐标为(,0),MN斜率为=MN的垂直平分线为y=2(x+),4x+2y1=0与y=2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知不符合题意x2+y2=3与y=2(x+),联立,消去y得5x212x+6=0,=1444560,可知中的曲线与MN的垂直平分线有交点,中的方程与y=2(x+),联立,消去y得9x224x16=0,0可知中的曲线与MN的垂直平分线有交点,中的方程与y=2(x+),联立,消去y得7x224x+20=0,0可知中的曲线与MN的垂直平分线有交点,故选D12【答案】A【解析】试题分析:函数向右平移个单位得出的图象,又是偶函数,对称轴方程为,的对称轴方程为.故选A考点:函数的对称性.二、填空题13【答案】【解析】试题分析:函数图象开口向上,对称轴为,函数在区间上递减,所以.考点:二次函数图象与性质14【答案】 【解析】解:f(x)=axg(x)(a0且a1),=ax,又f(x)g(x)f(x)g(x),()=0,=ax是增函数,a1,+=a1+a1=,解得a=或a=2综上得a=2数列为2n数列的前n项和大于62,2+22+23+2n=2n+1262,即2n+164=26,n+16,解得n5n的最小值为6故答案为:6【点评】本题考查等比数列的前n项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题15【答案】 【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,方法二:先求出“第一次摸到红球”的概率为:P1=,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P2再求“第一次摸到红球且第二次也摸到红球”的概率为P=,根据条件概率公式,得:P2=,故答案为:【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题看准确事件之间的联系,正确运用公式,是解决本题的关键16【答案】(0,1) 【解析】解:画出函数f(x)的图象,如图示:令y=k,由图象可以读出:0k1时,y=k和f(x)有3个交点,即方程f(x)=k有三个不同的实根,故答案为(0,1)【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题17【答案】y=1.7t+68.7 【解析】解: =, =63.6=(2)4.4+(1)1.4+0+1(1.6)+2(2.6)=17=4+1+0+1+2=10=1.7. =63.6+1.73=68.7y关于t的线性回归方程为y=1.7t+68.7故答案为y=1.7t+68.7【点评】本题考查了线性回归方程的解法,属于基础题18【答案】(x1)2+(y+1)2=5 【解析】解:设所求圆的圆心为(a,b),半径为r,点A(2,1)关于直线x+y=0的对称点A仍在这个圆上,圆心(a,b)在直线x+y=0上,a+b=0,且(2a)2+(1b)2=r2;又直线xy+1=0截圆所得的弦长为,且圆心(a,b)到直线xy+1=0的距离为d=,根据垂径定理得:r2d2=,即r2()2=;由方程组成方程组,解得;所求圆的方程为(x1)2+(y+1)2=5故答案为:(x1)2+(y+1)2=5三、解答题19【答案】 【解析】解:(1)由已知可以知道,函数f(x)在x1,2上单调递减,在x2,3上单调递增,f(x)min=f(2)=2+2=4,又f(1)=1+4=5,f(3)=3+=;f(1)f(3)所以f(x)max=f(1)=5所以f(x)在x1,3的值域为4,5(2)y=g(x)=2x+1+8设=2x+1,x0,1,13,则y=8,由已知性质得,当1u2,即0x时,g(x)单调递减,所以递减区间为0,;当2u3,即x1时,g(x)单调递增,所以递增区间为,1;由g(0)=3,g()=4,g(1)=,得g(x)的值域为4,3因为h(x)=x2a为减函数,故h(x)12a,2a,x0,1根据题意,g(x)的值域为h(x)的值域的子集,从而有,所以a= 20【答案】 【解析】解:()证明:如果g(x)是定义域(0,+)上的增函数,则有g(x)=2ax+b+=0;从而有2ax2+bx+c0对任意x(0,+)恒成立;又a0,则结合二次函数的图象可得,2ax2+bx+c0对任意x(0,+)恒成立不可能,故当a0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;()函数f(x)=ax2+bx+c是“K函数”,g(x)=ax2+bx+clnx不是“K函数”,事实上,对于二次函数f(x)=ax2+bx+c,k=a(x1+x2)+b=2ax0+b;又f(x0)=2ax0+b,故k=f(x0);故函数f(x)=ax2+bx+c是“K函数”;对于函数g(x)=ax2+bx+clnx,不妨设0x1x2,则k=2ax0+b+;而g(x0)=2ax0+b+;故=,化简可得,=;设t=,则0t1,lnt=;设s(t)=lnt;则s(t)=0;则s(t)=lnt是(0,1)上的增函数,故s(t)s(1)=0;则lnt;故g(x)=ax2+bx+clnx不是“K函数”【点评】本题考查了导数的综合应用及学生对新定义的接受能力,属于中档题21【答案】 【解析】解:()f(x)=sincos+cos2=sin(+),由2k+2k,kZ可解得:4kx4k,kZ,函数f(x)单调递增区间是:4k,4k,kZ()f(A)=sin(+),由条件及正弦定理得sinBcosC=(2sinAsinC)cosB=2sinAcosBsinCcosB,则sinBcosC+sinCcosB=2sinAcosB,sin(B+C)=2sinAcosB,又sin(B+C)=sinA0,cosB=,又0B,B=可得0A,+,sin(+)1,故函数f(A)的取值范围是(1,)【点评】本题考查三角函数性质及简单的三角变换,要求学生能正确运用三角函数的概念和公式对已知的三角函数进行化简求值,属于中档题22【答案】 【解析】解:(1)若 x0,则x0(1分)当x0时,f(x)=()xf(x)=()xf(x)是定义在R上的奇函数,f(x)=f(x),f(x)=()x=2x(4分)(2)(x)是定义在R上的奇函数,当x=0时,f(x)=0,f(x)=(7分)函数图象如下图所示:(3)由(2)中图象可得:f(x)的减区间为(,+)(11分)(用R表示扣1分)无增区间(12分)【点评】本题考查的知识点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机械租赁合作协议与合同
- 食品生产许可授权协议书
- 臭豆腐店铺转让合同范本
- 终止合同协议书文案模板
- 自建房商业售卖合同范本
- 烘焙店用品转让合同范本
- 芯模板设备出售合同协议
- 篮球俱乐部转让合同范本
- 派遣合同三方协议书范本
- 注册造价教材转让协议书
- 管理学教学设计创新汇报
- 2024年天津市公安局滨海分局招聘警务辅助人员考试真题
- 2025至2030停车场项目发展趋势分析与未来投资战略咨询研究报告
- 装置保运方案(3篇)
- 重症心脏超声指南解读
- 职工诉求服务管理制度
- 义务教育化学课程标准(2022年版)
- 护理心绞痛课件
- 2025年高考真题-物理(江苏卷) 含答案
- 2025年高考真题-化学(安徽卷) 含答案
- 美容院商业计划书(完整版)
评论
0/150
提交评论