




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷修文县第二中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 若关于x的方程x3x2x+a=0(aR)有三个实根x1,x2,x3,且满足x1x2x3,则a的取值范围为( )AaBa1Ca1Da12 已知an=(nN*),则在数列an的前30项中最大项和最小项分别是( )Aa1,a30Ba1,a9Ca10,a9Da10,a303 下列函数在其定义域内既是奇函数又是增函数的是()A B C D4 若数列an的通项公式an=5()2n24()n1(nN*),an的最大项为第p项,最小项为第q项,则qp等于( )A1B2C3D45 冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示杂质高杂质低旧设备37121新设备22202根据以上数据,则( )A含杂质的高低与设备改造有关B含杂质的高低与设备改造无关C设备是否改造决定含杂质的高低D以上答案都不对6 已知a,b是实数,则“a2bab2”是“”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件 7 圆锥的高扩大到原来的 倍,底面半径缩短到原来的,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的倍 C.不变 D.缩小到原来的8 已知为的三个角所对的边,若,则( )A23 B43 C31 D32【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力9 设函数,则有( )Af(x)是奇函数,Bf(x)是奇函数, y=bxCf(x)是偶函数Df(x)是偶函数,10执行如图所示的程序框图,若输入的分别为0,1,则输出的()A4 B16 C27 D3611某个几何体的三视图如图所示,该几何体的表面积为9214,则该几何体的体积为( )A8020B4020C6010D801012已知条件p:x2+x20,条件q:xa,若q是p的充分不必要条件,则a的取值范围可以是( )Aa1Ba1Ca1Da3二、填空题13已知直线5x+12y+m=0与圆x22x+y2=0相切,则m=14函数y=sin2x2sinx的值域是y15已知实数x,y满足约束条,则z=的最小值为16= .17命题“若,则”的否命题为18在极坐标系中,点(2,)到直线(cos+sin)=6的距离为三、解答题19请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm)(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值20已知集合A=x|1x3,集合B=x|2mx1m(1)若AB,求实数m的取值范围;(2)若AB=,求实数m的取值范围21(本小题满分12分)已知在中,角所对的边分别为且 .()求角的大小;() 若,的面积为,求. 22已知椭圆+=1(ab0)的离心率为,且a2=2b(1)求椭圆的方程;(2)直线l:xy+m=0与椭圆交于A,B两点,是否存在实数m,使线段AB的中点在圆x2+y2=5上,若存在,求出m的值;若不存在,说明理由 23某农户建造一座占地面积为36m2的背面靠墙的矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x不得超过7m,墙高为2m,鸡舍正面的造价为40元/m2,鸡舍侧面的造价为20元/m2,地面及其他费用合计为1800元(1)把鸡舍总造价y表示成x的函数,并写出该函数的定义域(2)当侧面的长度为多少时,总造价最低?最低总造价是多少?24.(1)求函数的单调递减区间;(2)在中,角的对边分别为,若,的面积为,求的最小值. 修文县第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:由x3x2x+a=0得a=x3x2x,设f(x)=x3x2x,则函数的导数f(x)=3x22x1,由f(x)0得x1或x,此时函数单调递增,由f(x)0得x1,此时函数单调递减,即函数在x=1时,取得极小值f(1)=111=1,在x=时,函数取得极大值f()=()3()2()=,要使方程x3x2x+a=0(aR)有三个实根x1,x2,x3,则1a,即a1,故选:B【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键2 【答案】C【解析】解:an=1+,该函数在(0,)和(,+)上都是递减的,图象如图,910这个数列的前30项中的最大项和最小项分别是a10,a9故选:C【点评】本题考查了数列的函数特性,考查了数形结合的解题思想,解答的关键是根据数列通项公式画出图象,是基础题3 【答案】B【解析】【知识点】函数的单调性与最值函数的奇偶性【试题解析】若函数是奇函数,则故排除A、D;对C:在(-和(上单调递增,但在定义域上不单调,故C错;故答案为:B4 【答案】A【解析】解:设=t(0,1,an=5()2n24()n1(nN*),an=5t24t=,an,当且仅当n=1时,t=1,此时an取得最大值;同理n=2时,an取得最小值qp=21=1,故选:A【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题5 【答案】 A【解析】独立性检验的应用【专题】计算题;概率与统计【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的【解答】解:由已知数据得到如下22列联表杂质高杂质低合计旧设备37121158新设备22202224合计59323382由公式2=13.11,由于13.116.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的【点评】本题考查独立性检验,考查写出列联表,这是一个基础题6 【答案】C【解析】解:由a2bab2得ab(ab)0,若ab0,即ab,则ab0,则成立,若ab0,即ab,则ab0,则a0,b0,则成立,若则,即ab(ab)0,即a2bab2成立,即“a2bab2”是“”的充要条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键7 【答案】A【解析】试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为,将圆锥的高扩大到原来的倍,底面半径缩短到原来的,则体积为,所以,故选A.考点:圆锥的体积公式.18 【答案】C【解析】由已知等式,得,由正弦定理,得,则,所以,故选C9 【答案】C【解析】解:函数f(x)的定义域为R,关于原点对称又f(x)=f(x),所以f(x)为偶函数而f()=f(x),故选C【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法10【答案】D【解析】【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是,则输出的36。故答案为:D11【答案】【解析】解析:选D.该几何体是在一个长方体的上面放置了半个圆柱依题意得(2r2rr2)252r252rr59214, 即(8)r2(305)r(9214)0,即(r2)(8)r4670,r2,该几何体的体积为(4422)58010.12【答案】A【解析】解:条件p:x2+x20,条件q:x2或x1q是p的充分不必要条件a1 故选A二、填空题13【答案】8或18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案【解答】解:整理圆的方程为(x1)2+y2=1故圆的圆心为(1,0),半径为1直线与圆相切圆心到直线的距离为半径即=1,求得m=8或18故答案为:8或1814【答案】1,3 【解析】解:函数y=sin2x2sinx=(sinx1)21,1sinx1,0(sinx1)24,1(sinx1)213函数y=sin2x2sinx的值域是y1,3故答案为1,3【点评】熟练掌握正弦函数的单调性、二次函数的单调性是解题的关键15【答案】 【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=32x+y,设t=2x+y,则y=2x+t,平移直线y=2x+t,由图象可知当直线y=2x+t经过点B时,直线y=2x+t的截距最小,此时t最小由,解得,即B(3,3),代入t=2x+y得t=2(3)+3=3t最小为3,z有最小值为z=33=故答案为:【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法16【答案】【解析】试题分析:原式=。考点:指、对数运算。17【答案】若,则【解析】试题分析:若,则,否命题要求条件和结论都否定考点:否命题.18【答案】1 【解析】解:点P(2,)化为P直线(cos+sin)=6化为点P到直线的距离d=1故答案为:1【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题三、解答题19【答案】 【解析】解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30x),0x30(1)S=4ah=8x(30x)=8(x15)2+1800,当x=15时,S取最大值(2)V=a2h=2(x3+30x2),V=6x(20x),由V=0得x=20,当x(0,20)时,V0;当x(20,30)时,V0;当x=20时,包装盒容积V(cm3)最大,此时,即此时包装盒的高与底面边长的比值是20【答案】 【解析】解:(1)由AB知:,得m2,即实数m的取值范围为(,2;(2)由AB=,得:若2m1m即m时,B=,符合题意;若2m1m即m时,需或,得0m或,即0m,综上知m0即实数m的取值范围为0,+)【点评】本题主要考查集合的包含关系判断及应用,交集及其运算解答(2)题时要分类讨论,以防错解或漏解21【答案】解:()由正弦定理及已知条件有, 即. 3分 由余弦定理得:,又,故. 6分 () 的面积为, 8分 又由()及得, 10分 由 解得或. 12分22【答案】【解析】解:(1)由题意得e=,a2=2b,a2b2=c2,解得a=,b=c=1故椭圆的方程为x2+=1;(2)设A(x1,y1),B(x2,y2),线段AB的中点为M(x0,y0)联立直线y=x+m与椭圆的方程得,即3x2+2mx+m22=0,=(2m)243(m22)0,即m23,x1+x2=,所以x0=,y0=x0+m=,即M(,)又因为M点在圆x2+y2=5上,可得()2+()2=5,解得m=3与m23矛盾故实数m不存在【点评】本题考查椭圆的方程的求法,注意运用离心率公式,考查直线和椭圆方程联立,运用韦达定理和中点坐标公式,考查存在性问题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 髋关节置换术后护理教学查房
- 汽车购车标准合同5篇
- 手足外伤康复护理查房
- 马蹄足内翻患者的护理
- 精神科护理康复训练
- 2025配偶之间房产赠与合同
- 公司校车安全培训会课件
- 生命科学科普讲解
- 数据化月度工作汇报
- 公司搬迁安全培训课件
- 防诈骗班会课件
- 老年照护芳香疗法应用规范
- 2025年高考语文真题全国一、二卷古诗词鉴赏
- 法拉利课件介绍
- 2025-2030年中国汽车电源管理IC行业市场现状供需分析及投资评估规划分析研究报告
- 2025至2030中国淀粉粘合剂行业现状调查与前景竞争对手分析报告
- 杉树林管理制度
- 农光互补光伏发电项目前景分析与可行性评估
- 学前儿童情绪管理与性格塑造研究
- 脑外伤的中医护理
- 2025年小学体育的考试题及答案
评论
0/150
提交评论