高考数学第8章立体几何初步第7节空间角与距离高考AB卷理.docx_第1页
高考数学第8章立体几何初步第7节空间角与距离高考AB卷理.docx_第2页
高考数学第8章立体几何初步第7节空间角与距离高考AB卷理.docx_第3页
高考数学第8章立体几何初步第7节空间角与距离高考AB卷理.docx_第4页
高考数学第8章立体几何初步第7节空间角与距离高考AB卷理.docx_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【大高考】2017版高考数学一轮总复习 第8章 立体几何初步 第7节 空间角与距离高考AB卷 理直线与平面所成的角及二面角1.(2014全国,11)直三棱柱ABCA1B1C1中,BCA90,M,N分别是A1B1,A1C1的中点,BCCACC1,则BM与AN所成角的余弦值为()A.B. C.D.解析以C1为坐标原点,建立如图所示的空间直角坐标系,设BCCACC12,则A(2,0,2),N(1,0,0),M(1,1,0),B(0,2,2),(1,0,2),(1,1,2),cos,故选C.答案C2.(2013大纲全国,10)已知正四棱柱ABCDA1B1C1D1中,AA12AB,则CD与平面BDC1所成角的正弦值等于()A.B. C.D.解析设AB1,则AA12,分别以、的方向为x轴、y轴、z轴的正方向建立空间直角坐标系.如图所示:则D(0,0,2),C1(0,1,0),B(1,1,2),C(0,1,2).(1,1,0),(0,1,2),(0,1,0),设n(x,y,z)为平面BDC1的一个法向量,则即,取n(2,2,1).设CD与平面BDC1所成角为则sin ,故选A.答案A3.(2012全国,19)如图,直三棱柱ABCA1B1C1中,ACBCAA1,D是棱AA1的中点,DC1BD.(1)证明:DC1BC;(2)求二面角A1BDC1的大小.(1)证明由题设知,三棱柱的侧面为矩形,由于D为AA1的中点,故DCDC1.又ACAA1,可得DCDC2CC,所以DC1DC.而DC1BD,DCBDD,所以DC1平面BCD.BC平面BCD,故DC1BC.(2)解由(1)知BCDC1,且BCCC1,则BC平面ACC1A1,所以CA,CB,CC1两两相互垂直.以C为坐标原点,的方向为x轴的正方向,|为单位长,建立如图所示的空间直角坐标系Cxyz.由题意知A1(1,0,2),B(0,1,0),D(1,0,1),C1(0,0,2).则(0,0,1),(1,1,1),(1,0,1).设n(x,y,z)是平面A1B1BD的法向量,则即可取n(1,1,0).同理,设m(x1,y1,z1)是平面C1BD的法向量.则即可取m(1,2,1).从而cosn,m.故二面角A1BDC1的大小为30.空间距离4.(2012大纲全国,4)已知正四棱柱ABCDA1B1C1D1中,AB2,CC12,E为CC1的中点,则直线AC1与平面BED的距离为()A.2B. C.D.1解析连接AC交BD于点O,连接OE,AB2,AC2.又CC12,则ACCC1.作CHAC1于点H,交OE于点M.由OE为ACC1的中位线知,CMOE,M为CH的中点.由BDAC,ECBD知,BD平面EOC,CMBD.CM平面BDE.HM为直线AC1到平面BDE的距离.又ACC1为等腰直角三角形,CH2.HM1.答案D直线与平面所成的角及二面角1.(2014广东,5)已知向量a(1,0,1),则下列向量中与a成60夹角的是()A.(1,1,0)B.(1,1,0)C.(0,1,1)D.(1,0,1)解析设选项中的向量与a的夹角为,对于选项A,由于cos ,此时夹角为120,不满足题意;对于选项B,由于cos ,此时夹角为60,满足题意.故选B.答案B2.(2014四川,8)如图,在正方体ABCDA1B1C1D1中,点O为线段BD的中点.设点P在线段CC1上,直线OP与平面A1BD所成的角为,则sin 的取值范围是()A. B. C. D.解析易证AC1平面A1BD,当点P在线段CC1上从C运动到C1时,直线OP与平面A1BD所成的角的变化情况:AOA1C1OA1(点P为线段CC1的中点时,),由于sinAOA1,sinC1OA1,sin 1,所以sin 的取值范围是,1.答案B3.(2013山东,4)已知三棱柱ABCA1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形.若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为()A.B. C.D.解析如图所示,由棱柱体积为,底面正三角形的边长为,可求得棱柱的高为.设P在平面ABC上射影为O,则可求得AO长为1,故AP长为2.故PAO,即PA与平面ABC所成的角为.答案B4.(2015四川,14)如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E、F分别为AB、BC的中点.设异面直线EM与AF所成的角为,则cos 的最大值为_.解析建立空间直角坐标系如图所示,设AB1,则,E,设M(0,y,1)(0y1),则,cos .设异面直线所成的角为,则cos |cos |,令t1y,则y1t,0y1,0t1,那么cos |cos |,令x,0t1,x1,那么cos ,又z9x28x4在1,)上单增,x1,zmin5,此时cos 的最大值.答案5.(2016四川,18)如图,在四棱锥PABCD中,ADBC,ADCPAB90,BCCDAD.E为边AD的中点,异面直线PA与CD所成的角为90.(1)在平面PAB内找一点M,使得直线CM平面PBE,并说明理由;(2)若二面角PCDA的大小为45,求直线PA与平面PCE所成角的正弦值.解(1)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M平面PAB),点M即为所求的一个点.理由如下:由已知,BCED,且BCED.所以四边形BCDE是平行四边形.从而CMEB.又EB平面PBE,CM平面PBE.所以CM平面PBE.(说明:延长AP至点N,使得APPN,则所找的点可以是直线MN上任意一点)(2)法一由已知,CDPA,CDAD,PAADA,所以CD平面PAD.从而CDPD.所以PDA是二面角PCDA的平面角.所以PDA45.设BC1,则在RtPAD中,PAAD2.过点A作AHCE,交CE的延长线于点H,连接PH.易知PA平面ABCD,从而PACE.且PAAHA,于是CE平面PAH.又CE平面PCE所以平面PCE平面PAH.过A作AQPH于Q,则AQ平面PCE.所以APH是PA与平面PCE所成的角.在RtAEH中,AEH45,AE1,所以AH.在RtPAH中,PH.所以sinAPH.法二由已知,CDPA,CDAD,PAADA,所以CD平面PAD.于是CDPD.从而PDA是二面角PCDA的平面角.所以PDA45.由PAAB,可得PA平面ABCD.设BC1,则在RtPAD中,PAAD2.作AyAD,以A为原点,以,的方向分别为x轴,z轴的正方向,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0).所以(1,0,2),(1,1,0),(0,0,2).设平面PCE的法向量为n(x,y,z).由得设x2,解得n(2,2,1).设直线PA与平面PCE所成角为,则sin .所以直线PA与平面PCE所成角的正弦值为.6.(2016北京,17)如图,在四棱锥PABCD中,平面PAD平面ABCD,PAPD,PAPD,ABAD,AB1,AD2,ACCD.(1)求证:PD平面PAB;(2)求直线PB与平面PCD所成角的正弦值;(3)在棱PA上是否存在点M;使得BM平面PCD?若存在,求的值;若不存在,说明理由.(1)证明平面PAD平面ABCD,平面PAD平面ABCDAD.又ABAD,AB平面ABCD.AB平面PAD.PD平面PAD.ABPD.又PAPD,PAABA.PD平面PAB.(2)解取AD中点O,连接CO,PO,PAPD,POAD.又PO平面PAD,平面PAD平面ABCD,PO平面ABCD,CO平面ABCD,POCO,ACCD,COAD.以O为原点建立如图所示空间直角坐标系.易知P(0,0,1),B(1,1,0),D(0,1,0),C(2,0,0).则(1,1,1),(0,1,1),(2,0,1).(2,1,0).设n(x0,y0,1)为平面PDC的一个法向量.由得解得即n.设PB与平面PCD的夹角为.则sin |cosn,|.(3)解设M是棱PA上一点,则存在0,1使得,因此点M(0,1,),(1,),因为BM平面PCD,所以BM平面PCD,当且仅当n0,即(1,)0,解得,所以在棱PA上存在点M使得BM平面PCD,此时.7.(2015安徽,19)如图所示,在多面体A1B1D1DCBA,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EFB1C.(2)求二面角EA1DB1的余弦值.(1)证明由正方形的性质可知A1B1ABDC,且A1B1ABDC,所以四边形A1B1CD为平行四边形,从而B1CA1D,又A1D面A1DE,B1C面A1DE,于是B1C面A1DE.又B1C面B1CD1.面A1DE面B1CD1EF,所以EFB1C.(2)解因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1AB,AA1AD,ABAD且AA1ABAD.以A为原点,分别以,为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为.设面A1DE的法向量n1(r1,s1,t1),而该面上向量,(0,1,1),由n1.n1得r1,s1,t1应满足的方程组(1,1,1)为其一组解,所以可取n1(1,1,1).设面A1B1CD的法向量n2(r2,s2,t2),而该面上向量(1,0,0),(0,1,1),由此同理可得n2(0,1,1).所以结合图形知二面角EA1DB1的余弦值为.8.(2015重庆,19)如图,三棱锥PABC中,PC平面ABC,PC3,ACB.D,E分别为线段AB,BC上的点,且CDDE,CE2EB2.(1)证明:DE平面PCD;(2)求二面角APDC的余弦值.(1)证明由PC平面ABC,DE平面ABC,故PCDE.由CE2,CDDE得CDE为等腰直角三角形,故CDDE.由PCCDC,DE垂直于平面PCD内两条相交直线,故DE平面PCD.(2)解由(1)知,CDE为等腰直角三角形,DCE,如图,过D作DF垂直CE于F,易知DFFCFE1,又已知EB1,故FB2.由ACB得DFAC,故ACDF.以C为坐标原点,分别以,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,则C(0,0,0),P(0,0,3),A,E(0,2,0),D(1,1,0),(1,1,0),(1,1,3),.设平面PAD的法向量为n1(x1,y1,z1),由n10,n10,得故可取n1(2,1,1).由(1)可知DE平面PCD,故平面PCD的法向量n2可取为,即n2(1,1,0).从而法向量n1,n2的夹角的余弦值为cos n1,n2,故所求二面角APDC的余弦值为.9.(2015北京,17)如图,在四棱锥AEFCB中,AEF为等边三角形,平面AEF平面EFCB,EFBC,BC4,EF2a,EBCFCB60,O为EF的中点.(1)求证:AOBE;(2)求二面角FAEB的余弦值;(3)若BE平面AOC,求a的值.(1)证明因为AEF是等边三角形,O为EF的中点,所以AOEF.又因为平面AEF平面EFCB.AO平面AEF,所以AO平面EFCB.所以AOBE.(2)解取BC中点G,连接OG.由题设知EFCB是等腰梯形,所以OGEF.由(1)知AO平面EFCB.又OG平面EFCB,所以OAOG.如图建立空间直角坐标系Oxyz,则E(a,0,0),A(0,0,a),B(2,(2a),0),(a,0,a),(a2,(a2),0).设平面AEB的法向量为n(x,y,z),则即令z1,则x,y1,于是n(,1,1).平面AEF的法向量为p(0,1,0).所以cosn,p.由题知二面角FAEB为钝角,所以它的余弦值为.(3)解因为BE平面AOC,所以BEOC,即0,因为(a2,(a2),0),(2,(2a),0),所以2(a2)3(a2)2.由0及0a2,解得a.10.(2015四川,18)一个正方体的平面展开图及该正方体的直观图的示意图如图所示,在正方体中,设BC的中点为M,GH的中点为N. (1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由); (2)证明:直线MN平面BDH; (3)求二面角AEGM的余弦值.(1)解点F,G,H的位置如图所示.(2)证明连接BD,设O为BD的中点,因为M,N分别是BC,GH的中点,所以OMCD,且OMCD,HNCD,且HNCD,所以OMHN,OMHN,所以MNHO是平行四边形,从而MNOH,又MN平面BDH,OH平面BDH,所以MN平面BDH.(3)解法一连接AC,过M作MPAC于P,在正方体ABCDEFGH中,ACEG,所以MPEG,过P作PKEG于K,连接KM,所以EG平面PKM,从而KMEG,所以PKM是二面角AEGM的平面角,设AD2,则CM1,PK2,在RtCMP中,PMCMsin 45,在RtPKM中,KM,所以cosPKM,即二面角AEGM的余弦值为.法二如图,以D为坐标原点,分别以,方向为x,y,z轴的正方向,建立空间直角坐标系Dxyz,设AD2,则M(1,2,0),G(0,2,2),E(2,0,2),O(1,1,0),所以,(2,2,0),(1,0,2),设平面EGM的一个法向量为n1(x,y,z),由取x2,得n1(2,2,1),在正方体ABCDEFGH中,DO平面AEGC,则可取平面AEG的一个法向量为n2(1,1,0),所以cosn1,n2,故二面角AEGM的余弦值为.11.(2014陕西,17)四面体ABCD及其三视图如图所示,过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(1)证明:四边形EFGH是矩形;(2)求直线AB与平面EFGH夹角的正弦值.(1)证明由该四面体的三视图可知,BDDC,BDAD,ADDC,BDDC2,AD1.由题设,BC平面EFGH,平面EFGH平面BDCFG,平面EFGH平面ABCEH,BCFG,BCEH,FGEH.同理EFAD,HGAD,EFHG,四边形EFGH是平行四边形.又ADDC,ADBD,AD平面BDC,ADBC,EFFG,四边形EFGH是矩形.(2)解法一如图,以D为坐标原点建立空间直角坐标系,则D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0),(0,0,1),(2,2,0),(2,0,1).设平面EFGH的法向量n(x,y,z),EFAD,FGBC,n0,n0,得取n(1,1,0),sin |cos,n|.法二建立以D为坐标原点建立空间直角坐标系,则D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0),E是AB的中点,F,G分别为BD,DC的中点,得E(1,0,),F(1,0,0),G(0,1,0).,(1,1,0),(2,0,1).设平面EFGH的法向量n(x,y,z),则n0,n0,得 取n(1,1,0),sin |cos,n|.12.(2014天津,17)如图,在四棱锥PABCD中,PA底面ABCD,ADAB,ABDC,ADDCAP2,AB1,点E为棱PC的中点.13.(2013湖南,19)如图,在直棱柱ABCDA1B1C1D1中,ADBC,BAD90,ACBD,BC1,ADAA13.(1)证明:ACB1D;(2)求直线B1C1与平面ACD1所成角的正弦值.法一(1)证明如图,因为BB1平面ABCD,AC平面ABCD,所以ACBB1.又ACBD,BB1BDB,所以AC平面BB1D.而B1D平面BB1D,所以ACB1D.(2)解因为B1C1AD,所以直线B1C1与平面ACD1所成的角等于直线AD与平面ACD1所成的角(记为).如图,连接A1D,因为棱柱ABCDA1B1C1D1是直棱柱,且B1A1D1BAD90,所以A1B1平面ADD1A1.从而A1B1AD1.又ADAA13,所以四边形ADD1A1是正方形,于是A1DAD1.故AD1平面A1B1D,于是AD1B1D.由(1)知,ACB1D,所以B1D平面ACD1.故ADB190.在直角梯形ABCD中,因为ACBD,所以BACADB.从而RtABCRtDAB,故.即AB.连接AB1,易知AB1D是直角三角形,且B1D2BBBD2BBAB2AD221,即B1D.在RtAB1D中,cosADB1,即cos(90).从而sin .即直线B1C1与平面ACD1所成角的正弦值为.法二(1)证明易知,AB,AD,AA1两两垂直.如图,以A为坐标原点,AB,AD,AA1所在直线分别为x轴,y轴,z轴建立空间直角坐标系.设ABt,则相关各点的坐标为:A(0,0,0),B(t,0,0),B1(t,0,3),C(t,1,0),C1(t,1,3),D(0,3,0),D1(0,3,3).从而(t,3,3),(t,1,0),(t,3,0).因为ACBD,所以t2300.解得t或t(舍去).于是(,3,3),(,1,0).因为3300,所以,即ACB1D.(2)解由(1)知,(0,3,3),(,1,0),(0,1,0).设n(x,y,z)是平面ACD1的一个法向量,则即令x1,则n(1,).设直线B1C1与平面ACD1所成角为,则sin|cosn,|.空间距离14.(2014江西,10)如图,在长方体ABCDA1B1C1D1中,AB11,AD7,AA112.一质点从顶点A射向点E(4,3,12),遇长方体的面反射(反射服从光的反射原理),将第i1次到第i次反射点之间的线段记为Li(i2,3,4),L1AE,将线段L1,L2,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论