建瓯市外国语学校2018-2019学年上学期高二数学12月月考试题含解析_第1页
建瓯市外国语学校2018-2019学年上学期高二数学12月月考试题含解析_第2页
建瓯市外国语学校2018-2019学年上学期高二数学12月月考试题含解析_第3页
建瓯市外国语学校2018-2019学年上学期高二数学12月月考试题含解析_第4页
建瓯市外国语学校2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

建瓯市外国语学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 函数f(x)=xsinx的图象大致是( )ABC D2 直线l平面,直线m平面,命题p:“若直线m,则ml”的逆命题、否命题、逆否命题中真命题的个数为( )A0B1C2D33 已知抛物线:的焦点为,是抛物线的准线上的一点,且的纵坐标为正数,是直线与抛物线的一个交点,若,则直线的方程为( )A B C D4 已知全集I=1,2,3,4,5,6,7,8,集合M=3,4,5,集合N=1,3,6,则集合2,7,8是( )AMNBMNCIMINDIMIN5 如图,正方体ABCDA1B1C1D1的棱线长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是( )AACBEBEF平面ABCDC三棱锥ABEF的体积为定值D异面直线AE,BF所成的角为定值6 下列各组函数为同一函数的是( )Af(x)=1;g(x)=Bf(x)=x2;g(x)=Cf(x)=|x|;g(x)=Df(x)=;g(x)=7 (m+1)x2(m1)x+3(m1)0对一切实数x恒成立,则实数m的取值范围是( )A(1,+)B(,1)CD8 函数f(x)=x33x2+5的单调减区间是( )A(0,2) B(0,3) C(0,1) D(0,5)9 已知是虚数单位,若复数在复平面内对应的点在第四象限,则实数的值可以是( )A-2 B1 C2 D310连续抛掷两次骰子得到的点数分别为m和n,记向量=(m,n),向量=(1,2),则的概率是( )ABCD11设集合A=x|2x4,集合B=x|y=lg(x1),则AB等于( )A(1,2)B1,2C1,2)D(1,212若函数y=x2+(2a1)x+1在区间(,2上是减函数,则实数a的取值范围是( )A,+)B(,C,+)D(,二、填空题13等比数列an的前n项和为Sn,已知S3=a1+3a2,则公比q=14命题“若a0,b0,则ab0”的逆否命题是(填“真命题”或“假命题”)15Sn=+=16直线ax+by=1与圆x2+y2=1相交于A,B两点(其中a,b是实数),且AOB是直角三角形(O是坐标原点),则点P(a,b)与点(1,0)之间距离的最小值为17设双曲线=1,F1,F2是其两个焦点,点M在双曲线上若F1MF2=90,则F1MF2的面积是18已知点E、F分别在正方体的棱上,且,则面AEF与面ABC所成的二面角的正切值等于 .三、解答题19已知曲线C的参数方程为(y为参数),过点A(2,1)作平行于=的直线l 与曲线C分别交于B,C两点(极坐标系的极点、极轴分别与直角坐标系的原点、x轴的正半轴重合)()写出曲线C的普通方程;()求B、C两点间的距离20证明:f(x)是周期为4的周期函数;(2)若f(x)=(0x1),求x5,4时,函数f(x)的解析式18已知函数f(x)=是奇函数21如图,正方形ABCD中,以D为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连接CF并延长交AB于点E()求证:AE=EB;()若EFFC=,求正方形ABCD的面积 22已知:函数f(x)=log2,g(x)=2ax+1a,又h(x)=f(x)+g(x)(1)当a=1时,求证:h(x)在x(1,+)上单调递增,并证明函数h(x)有两个零点;(2)若关于x的方程f(x)=log2g(x)有两个不相等实数根,求a的取值范围23如图所示,已知在四边形ABCD中,ADCD,AD=5,AB=7,BD=8,BCD=135(1)求BDA的大小(2)求BC的长24已知椭圆C的中心在坐标原点O,长轴在x轴上,离心率为,且椭圆C上一点到两个焦点的距离之和为4()椭圆C的标准方程()已知P、Q是椭圆C上的两点,若OPOQ,求证:为定值()当为()所求定值时,试探究OPOQ是否成立?并说明理由 建瓯市外国语学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:函数f(x)=xsinx满足f(x)=xsin(x)=xsinx=f(x),函数的偶函数,排除B、C,因为x(,2)时,sinx0,此时f(x)0,所以排除D,故选:A【点评】本题考查函数的图象的判断,函数的奇偶性以及函数值的应用,考查分析问题解决问题的能力2 【答案】B【解析】解:直线l平面,直线m平面,命题p:“若直线m,则ml”,命题P是真命题,命题P的逆否命题是真命题;P:“若直线m不垂直于,则m不垂直于l”,P是假命题,命题p的逆命题和否命题都是假命题故选:B3 【答案】B【解析】 考点:抛物线的定义及性质【易错点睛】抛物线问题的三个注意事项:(1)求抛物线的标准方程时一般要用待定系数法求p的值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程(2)注意应用抛物线定义中的距离相等的转化来解决问题(3)直线与抛物线有一个交点,并不表明直线与抛物线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点4 【答案】D【解析】解:全集I=1,2,3,4,5,6,7,8,集合M=3,4,5,集合N=1,3,6,MN=1,2,3,6,7,8,MN=3;IMIN=1,2,4,5,6,7,8;IMIN=2,7,8,故选:D5 【答案】 D【解析】解:在正方体中,ACBD,AC平面B1D1DB,BE平面B1D1DB,ACBE,故A正确;平面ABCD平面A1B1C1D1,EF平面A1B1C1D1,EF平面ABCD,故B正确;EF=,BEF的面积为定值EF1=,又AC平面BDD1B1,AO为棱锥ABEF的高,三棱锥ABEF的体积为定值,故C正确;利用图形设异面直线所成的角为,当E与D1重合时sin=,=30;当F与B1重合时tan=,异面直线AE、BF所成的角不是定值,故D错误;故选D6 【答案】C【解析】解:A、函数f(x)的定义域为R,函数g(x)的定义域为x|x0,定义域不同,故不是相同函数;B、函数f(x)的定义域为R,g(x)的定义域为x|x2,定义域不同,故不是相同函数;C、因为,故两函数相同;D、函数f(x)的定义域为x|x1,函数g(x)的定义域为x|x1或x1,定义域不同,故不是相同函数综上可得,C项正确故选:C7 【答案】C【解析】解:不等式(m+1)x2(m1)x+3(m1)0对一切xR恒成立,即(m+1)x2(m1)x+3(m1)0对一切xR恒成立若m+1=0,显然不成立若m+10,则 解得a故选C【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需8 【答案】A【解析】解:f(x)=x33x2+5,f(x)=3x26x,令f(x)0,解得:0x2,故选:A【点评】本题考察了函数的单调性,导数的应用,是一道基础题9 【答案】A【解析】试题分析:,对应点在第四象限,故,A选项正确.考点:复数运算10【答案】A【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m,n),有36种可能,而使的m,n满足m=2n,这样的点数有(2,1),(4,2),(6,3)共有3种可能;由古典概型公式可得的概率是:;故选:A【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题11【答案】D【解析】解:A=x|2x4=x|x2,由x10得x1B=x|y=lg(x1)=x|x1AB=x|1x2故选D12【答案】B【解析】解:函数y=x2+(2a1)x+1的图象是方向朝上,以直线x=为对称轴的抛物线又函数在区间(,2上是减函数,故2解得a故选B二、填空题13【答案】2 【解析】解:设等比数列的公比为q,由S3=a1+3a2,当q=1时,上式显然不成立;当q1时,得,即q23q+2=0,解得:q=2故答案为:2【点评】本题考查了等比数列的前n项和,考查了等比数列的通项公式,是基础的计算题14【答案】真命题 【解析】解:若a0,b0,则ab0成立,即原命题为真命题,则命题的逆否命题也为真命题,故答案为:真命题【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键15【答案】 【解析】解: =(),Sn=+= (1)+()+()+()=(1)=,故答案为:【点评】本题主要考查利用裂项法进行数列求和,属于中档题16【答案】 【解析】解:AOB是直角三角形(O是坐标原点),圆心到直线ax+by=1的距离d=,即d=,整理得a2+2b2=2,则点P(a,b)与点Q(1,0)之间距离d=,点P(a,b)与点(1,0)之间距离的最小值为故答案为:【点评】本题主要考查直线和圆的位置公式的应用以及两点间的距离公式,考查学生的计算能力17【答案】9 【解析】解:双曲线=1的a=2,b=3,可得c2=a2+b2=13,又|MF1|MF2|=2a=4,|F1F2|=2c=2,F1MF2=90,在F1AF2中,由勾股定理得:|F1F2|2=|MF1|2+|MF2|2=(|MF1|MF2|)2+2|MF1|MF2|,即4c2=4a2+2|MF1|MF2|,可得|MF1|MF2|=2b2=18,即有F1MF2的面积S=|MF1|MF2|sinF1MF2=181=9故答案为:9【点评】本题考查双曲线的简单性质,着重考查双曲线的定义与a、b、c之间的关系式的应用,考查三角形的面积公式,考查转化思想与运算能力,属于中档题18【答案】【解析】延长EF交BC的延长线于P,则AP为面AEF与面ABC的交线,因为,所以为面AEF与面ABC所成的二面角的平面角。三、解答题19【答案】 【解析】解:()由曲线C的参数方程为(y为参数),消去参数t得,y2=4x()依题意,直线l的参数方程为(t为参数),代入抛物线方程得 可得,t1t2=14|BC|=|t1t2|=8【点评】本题考查了参数方程化为普通方程、参数的意义、弦长公式,考查了计算能力,属于基础题20【答案】 【解析】(1)证明:由函数f(x)的图象关于直线x=1对称,有f(x+1)=f(1x),即有f(x)=f(x+2)又函数f(x)是定义在R上的奇函数,有f(x)=f(x)故f(x+2)=f(x)从而f(x+4)=f(x+2)=f(x)即f(x)是周期为4的周期函数(2)解:由函数f(x)是定义在R上的奇函数,有f(0)=0x1,0)时,x(0,1,故x1,0时,x5,4时,x+41,0,从而,x5,4时,函数f(x)的解析式为【点评】本题考查函数奇偶性的性质,函数解析式的求解常用的方法,本题解题的关键是根据函数是一个奇函数对函数式进行整理,本题是一个中档题目21【答案】 【解析】证明:()以D为圆心、DA为半径的圆弧与以BC为直径半圆交于点F,且四边形ABCD为正方形,EA为圆D的切线,且EB是圆O的切线,由切割线定理得EA2=EFEC,故AE=EB()设正方形的边长为a,连结BF,BC为圆O的直径,BFEC,在RtBCE中,由射影定理得EFFC=BF2=,BF=,解得a=2,正方形ABCD的面积为4【点评】本题考查两线段相等的证明,考查正方形面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养 22【答案】 【解析】解:(1)证明:h(x)=f(x)+g(x)=log2+2x,=log2(1)+2x;y=1在(1,+)上是增函数,故y=log2(1)在(1,+)上是增函数;又y=2x在(1,+)上是增函数;h(x)在x(1,+)上单调递增;同理可证,h(x)在(,1)上单调递增;而h(1.1)=log221+2.20,h(2)=log23+40;故h(x)在(1,+)上有且仅有一个零点,同理可证h(x)在(,1)上有且仅有一个零点,故函数h(x)有两个零点;(2)由题意,关于x的方程f(x)=log2g(x)有两个不相等实数根可化为1=2ax+1a在(,1)(1,+)上有两个不相等实数根;故a=;结合函数a=的图象可得,a0;即1a0【点评】本题考查了复合函数的单调性的证明与函数零点的判断,属于中档题23【答案】 【解析】(本题满分为12分)解:(1)在ABC中,AD=5,AB=7,BD=8,由余弦定理得=BDA=60(2)ADCD,BDC=30在ABC中,由正弦定理得, 24【答案】 【解析】(I)解:由题意可设椭圆的坐标方程为(ab0)离心率为,且椭圆C上一点到两个焦点的距离之和为4,2a=4,解得a=2,c=1b2=a2c2=3椭圆C的标准方程为(II)证明:当OP与OQ的斜率都存在时,设直线OP的方程为y=kx(k0),则直线OQ的方程为y=x(k0),P(x,y)联立,化为,|OP|2=x2+y2=,同理可得|OQ|2=,=+=为定值当直线OP或OQ的斜率一个为0而另一个不存在时,上式也成立因此=为定值(III)当=定值时,试探究OPOQ是否成立?并说明理由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论