




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
海淀区高三年级第一学期期末练习 数学(理科) 2017.1本试卷共4页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项1抛物线的焦点到准线的距离为开始结束A B1 C2 D32在极坐标系中,点与点的距离为A1 B CD3右侧程序框图所示的算法来自于九章算术.若输入的值为,的值为,则执行该程序框图输出的结果为A6B7C8D94已知向量满足,则 A BCD25已知直线经过双曲线的一个焦点且与其一条渐近线平行,则直线的方程可能是A B C D6设满足 则的最小值为A1 BC5 D97在手绘涂色本的某页上画有排成一列的6条未涂色的鱼,小明用红、蓝两种颜色给这些鱼涂色,每条鱼只能涂一种颜色,两条相邻的鱼不都涂成红色,涂色后,既有红色鱼又有蓝色鱼的涂色方法种数为A14B16C18D208如图,已知正方体的棱长为1,分别是棱AD,B1C1上的动点,设若棱与平面有公共点,则的取值范围是ABCD二、填空题共6小题,每小题5分,共30分9已知复数满足,则_10在的展开式中,常数项为_(用数字作答)11若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该几何体的体积为_12已知圆:,则圆心坐标为_;若直线过点且与圆相切,则直线的方程为_13已知函数. 若,则_; 若,使成立,则的最小值是_14已知函数,给出下列命题:的最大值为2;在内的零点之和为0;的任何一个极大值都大于1.其中所有正确命题的序号是_三、解答题共6小题,共80分解答应写出文字说明、演算步骤或证明过程15(本小题满分13分)在DABC中,且DABC面积为()求的值;()求的值16(本小题满分13分)诚信是立身之本,道德之基.某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“”表示每周“水站诚信度”为了便于数据分析,以四周为一周期,下表为该水站连续十二周(共三个周期)的诚信度数据统计:第一周第二周第三周第四周第一个周期95%98%92%88%第二个周期94%94%83%80%第三个周期85%92%95%96%()计算表中十二周“水站诚信度”的平均数;()分别从上表每个周期的4个数据中随机抽取1个数据,设随机变量表示取出的3个数据中“水站诚信度”超过的数据的个数,求随机变量的分布列和期望;()已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由17(本小题满分14分)如图1,在梯形中,是边的中点将三角形绕边所在直线旋转到位置,使得,如图2设为平面与平面的交线()判断直线与直线的位置关系并证明;()若直线上的点满足,求出的长;()求直线与平面所成角的正弦值18(本小题满分13分)已知是椭圆G:上的两点()求椭圆G的离心率;()已知直线l过点,且与椭圆交于另一点(不同于点),若以为直径的圆经过点,求直线l的方程19. (本小题满分14分)已知函数()若曲线存在斜率为的切线,求实数的取值范围;()求的单调区间;()设函数,求证:当时,在上存在极小值20(本小题满分13分)对于无穷数列,,若,则称是的“收缩数列”其中,,分别表示中的最大数和最小数已知为无穷数列,其前项和为,数列是的“收缩数列”()若,求的前项和;()证明:的“收缩数列”仍是;()若,求所有满足该条件的海淀区高三年级第一学期期末练习数学(理科)答案及评分标准2017.1一、选择题(共8小题,每小题5分,共40分)1.B 2.B 3. C 4.C 5.A 6. B 7.D 8.C二、填空题(共6小题,每小题5分,共30分,9. 10.15 11. 12.(1,0);和13., 14.三、解答题(共6小题,共80分)15.(本小题满分13分)解:()由DABC面积公式及题设得,解得由余弦定理及题设可得,又. (不写b0不扣分)()在DABC中,由正弦定理得:,又,所以是锐角(或:因为)所以,所以16. (本小题满分13分)解:()十二周“水站诚信度”的平均数为=()随机变量的可能取值为0,1,2,3三个周期“水站诚信度”超过分别有3次,2次,3次随机变量的分布列为0123.()本题为开放问题,答案不唯一,在此给出评价标准,并给出可能出现的答案情况,阅卷时按照标准酌情给分.给出明确结论,1分,结合已有数据,能够运用以下三个标准中的任何一个陈述得出该结论的理由,2分.标准1:会用主题活动前后的百分比变化进行阐述标准2:会用三个周期的诚信度平均数变化进行阐述标准3:会用主题活动前后诚信度变化趋势进行阐述可能出现的作答情况举例,及对应评分标准如下:情况一:结论:两次主题活动效果均好.(1分)理由:活动举办后,“水站诚信度”由88%94%和80%85%看出,后继一周都有提升.(2分)情况二:结论:两次主题活动效果都不好.(1分)理由:三个周期的“水站诚信度”平均数分别为93.25%,87.75%,92%(平均数的计算近似即可),活动进行后,后继计算周期的“水站诚信度”平均数和第一周期比较均有下降.(2分)情况三:结论:第一次主题活动效果好于第二次主题活动.(1分)理由:第一次主题活动举办的后继一周“水站诚信度”提升百分点(94%-88%=6%)高于第二次主题活动举办的后继一周“水站诚信度”提升百分点(85%-80%=5%).(2分)情况四:结论:第二次主题活动效果好于第一次主题活动.(1分)理由:第一次活动后“水站诚信度”虽有上升,但两周后又有下滑,第二次活动后,“水站诚信度”数据连续四周呈上升趋势.(2分)(答出变化) 情况五:结论:两次主题活动累加效果好.(1分)理由:两次主题活动“水站诚信度”均有提高,且第二次主题活动后数据提升状态持续周期好.(2分)情况六:以“两次主题活动无法比较作答,只有给出如下理由才给3分:“12个数据的标准差较大,尽管平均数差别不大,但比较仍无意义”.给出其他理由,则结论和理由均不得分(0分).说明:情况一和情况二用极差或者方差作为得出结论的理由,只给结论分1分,不给理由分2分.以下情况不得分.情况七:结论及理由“只涉及一次主题活动,理由中无法辩析是否为两次活动后数据比较之结果”的.例:结论:第二次主题活动效果好.理由:第二次主题活动后诚信度有提高. 其他答案情况,比照以上情况酌情给分,赋分原则是:遵循三个标准,能使用表中数据解释所得结论. 17. (本小题满分14分)解:()直线/.证明:由题设可得,所以平面. 又因为平面,平面平面所以.法1:()由已知,是边的中点,所以,因为,所以四边形是正方形,所以在图1中,所以结合题设可得,在图2中有,又因为,所以. 在平面内作垂直于,则.如图,建立空间直角坐标系,则,所以.设,则由可得,即解得.所以.()设平面的法向量,则即令,则,所以,设直线与平面所成角为,则.法2:()由已知,是边的中点,所以,因为,所以四边形是正方形,所以在图1中,所以结合题设可得,在图2中有,又因为,所以.又因为,所以.若在直线上的点满足,又,所以,所以,因为,所以,因为,所以.(注:答案中标灰部分,实际上在前面表达的符号中已经显现出该条件,故没写不扣分)()由(II)可知两两垂直,如图,建立空间直角坐标系,则,所以设平面的法向量,则即令,则,所以,设直线与平面所成角为,则.18. (本小题满分13分)解:()由已知由点在椭圆G上可得,解得.所以,所以椭圆G的离心率是()法1:因为以为直径的圆经过点,所以,由斜率公式和可得,所以,设直线的方程为. 由得,由题设条件可得,所以,所以直线的方程为. 法2:因为以为直径的圆经过点,所以,由斜率公式和可得,所以,设 ,则,即由点C在椭圆上可得将代入得,因为点不同于点,所以,所以,所以直线的方程为.法3:当直线l过点且斜率不存在时,可得点,不满足条件.设直线的方程为,点由可得,显然,此方程两个根是点的横坐标,所以,即所以因为以为直径的圆经过点,所以,即.(此处用亦可),即,当时,即直线,与已知点不同于点矛盾,所以所以直线的方程为. 19. (本小题满分14分)解:()由得.由已知曲线存在斜率为的切线,所以存在大于零的实数根,即存在大于零的实数根,因为在时单调递增,所以实数的取值范围. ()由,可得当时,所以函数的增区间为;当时,若,若,所以此时函数的增区间为,减区间为.()由及题设得,由可得,由()可知函数在上递增,所以,取,显然,所以存在满足,即存在满足,所以在区间上的情况如下:0极小所以当时,在上存在极小值.(本题所取的特殊值不唯一,注意到),因此只需要即可)20. (本小题满分13分)解:()由可得为递增数列,所以,故的前n项和为.-()因为,所以所以.又因为,所以,所以的“收缩数列”仍是.()由可得当时,;当时,即,所以;当时,即(*),若,则,所以由(*)可得,与矛盾;若,则,所以由(*)可得,所以同号,这与矛盾;若,则,由(*)可得.猜想:满足的数列是:.经验证,左式=,右式=.下面证明其它数列都不满足()的题设条件.法1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保定三中选拔考试题及答案
- 考点解析-人教版八年级《简单机械》专项测评练习题(含答案详解)
- 衡水三模考试题及答案
- 抖店新手出村考试题库及答案
- 西宁市七中考试卷及答案
- 湖北化学高一月考试卷及答案
- 2025年函授高起专学前教育试题及答案
- 2025年云南法检系统书记员招聘考试(公文写作)测试题及答案
- 2025年江苏省事业单位招聘考试教育类专业知识真题模拟训练试题
- 事业单位招聘考试综合类公共基础知识真题模拟试卷(2025年度)
- 孵化器行业培训课件
- 叶云燕老师课件
- 交通运输面试题库及答案
- 精神科分级护理试题及答案
- 2025年秋期新部编人教版六年级上册道德与法治教学计划+进度表
- 九江银行笔试题库及答案
- 2025-2026学年人教版(2024)小学数学三年级上册(全册)教学设计(附目录P296)
- 血管内导管相关性血流感染预防与诊治指南(2025)解读
- 学校心理咨询工作流程
- 古树修复方案(3篇)
- 2025城管执法考试题及答案
评论
0/150
提交评论