满洲里市三中2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
满洲里市三中2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
满洲里市三中2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
满洲里市三中2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
满洲里市三中2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

满洲里市三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 底面为矩形的四棱锥PABCD的顶点都在球O的表面上,且O在底面ABCD内,PO平面ABCD,当四棱锥PABCD的体积的最大值为18时,球O的表面积为( )A36 B48C60 D722 已知函数f(x)=x4cosx+mx2+x(mR),若导函数f(x)在区间2,2上有最大值10,则导函数f(x)在区间2,2上的最小值为( )A12B10C8D63 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队首发要求每个班至少1人,至多2人,则首发方案数为( )A720B270C390D3004 已知等差数列an中,a6+a8=16,a4=1,则a10的值是( )A15B30C31D645 若tan 0,则( )Asin 0Bcos 0Csin cos0Dsin cos 06 已知,则fff(2)的值为( )A0B2C4D87 设0a1,实数x,y满足,则y关于x的函数的图象形状大致是( )ABCD8 函数f(x)=3x+x3的零点所在的区间是( )A(0,1)B(1,2)C(2.3)D(3,4)9 已知函数f(2x+1)=3x+2,且f(a)=2,则a的值等于( )A8B1C5D110复数(为虚数单位),则的共轭复数为( ) A B C D【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力11不等式x22x+30的解集为( )Ax|x3或x1Bx|1x3Cx|3x1Dx|x3或x112已知集合,则( )A B C D【命题意图】本题考查集合的交集运算,意在考查计算能力二、填空题13在ABC中,角A,B,C的对边分别为a,b,c,sinA,sinB,sinC依次成等比数列,c=2a且=24,则ABC的面积是14已知一个动圆与圆C:(x+4)2+y2=100相内切,且过点A(4,0),则动圆圆心的轨迹方程15在极坐标系中,O是极点,设点A,B的极坐标分别是(2,),(3,),则O点到直线AB的距离是16已知z是复数,且|z|=1,则|z3+4i|的最大值为17在(1+x)(x2+)6的展开式中,x3的系数是18直线l过原点且平分平行四边形ABCD的面积,若平行四边形的两个顶点为B(1,4),D(5,0),则直线l的方程为三、解答题19已知函数f(x)=alnx+,曲线y=f(x)在点(1,f(1)处的切线方程为y=2(I)求a、b的值;()当x1时,不等式f(x)恒成立,求实数k的取值范围 20如图,已知AC,BD为圆O的任意两条直径,直线AE,CF是圆O所在平面的两条垂线,且线段AE=CF=,AC=2()证明ADBE;()求多面体EFABCD体积的最大值21求同时满足下列两个条件的所有复数z:z+是实数,且1z+6;z的实部和虚部都是整数22设集合.(1)若,求实数的值;(2),求实数的取值范围.111123(本小题满分12分)已知分别是椭圆:的两个焦点,是椭圆上一点,且成等差数列(1)求椭圆的标准方程;、(2)已知动直线过点,且与椭圆交于两点,试问轴上是否存在定点,使得恒成立?若存在,求出点的坐标;若不存在,请说明理由24如图,在四棱锥PABCD中,ADBC,ABAD,ABPA,BC=2AB=2AD=4BE,平面PAB平面ABCD,()求证:平面PED平面PAC;()若直线PE与平面PAC所成的角的正弦值为,求二面角APCD的平面角的余弦值满洲里市三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】【解析】选A.设球O的半径为R,矩形ABCD的长,宽分别为a,b,则有a2b24R22ab,ab2R2,又V四棱锥PABCDS矩形ABCDPOabRR3.R318,则R3,球O的表面积为S4R236,选A.2 【答案】C【解析】解:由已知得f(x)=4x3cosxx4sinx+2mx+1,令g(x)=4x3cosxx4sinx+2mx是奇函数,由f(x)的最大值为10知:g(x)的最大值为9,最小值为9,从而f(x)的最小值为9+1=8故选C【点评】本题考查了导数的计算、奇函数的最值的性质属于常规题,难度不大3 【答案】C 解析:高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队各个班的人数有5班的3人、16班的4人、33班的5人,首发共有1、2、2;2、1、2;2、2、1类型;所求方案有: +=390故选:C4 【答案】A【解析】解:等差数列an,a6+a8=a4+a10,即16=1+a10,a10=15,故选:A5 【答案】C【解析】解:若tan0,则sin与cos必定异号,sincos必定小于0故选:C【点评】本题考查了三角函数值的符号的判断,是基础题6 【答案】C【解析】解:20f(2)=0f(f(2)=f(0)0=0f(0)=2即f(f(2)=f(0)=220f(2)=22=4即ff(2)=f(f(0)=f(2)=4故选C7 【答案】A【解析】解:0a1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y轴对称,在(0,+)上单调递增,且函数的图象经过点(0,1),故选:A【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题8 【答案】A【解析】解:f(0)=20,f(1)=10,由零点存在性定理可知函数f(x)=3x+x3的零点所在的区间是(0,1)故选A【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题9 【答案】B【解析】解:函数f(2x+1)=3x+2,且f(a)=2,令3x+2=2,解得x=0,a=20+1=1故选:B10【答案】A【解析】根据复数的运算可知,可知的共轭复数为,故选A.11【答案】D【解析】解:不等式x22x+30,变形为:x2+2x30,因式分解得:(x1)(x+3)0,可化为:或,解得:x3或x1,则原不等式的解集为x|x3或x1故选D12【答案】C【解析】当时,所以,故选C二、填空题13【答案】4 【解析】解:sinA,sinB,sinC依次成等比数列,sin2B=sinAsinC,由正弦定理可得:b2=ac,c=2a,可得:b=a,cosB=,可得:sinB=,=24,可得:accosB=ac=24,解得:ac=32,SABC=acsinB=4故答案为:414【答案】+=1 【解析】解:设动圆圆心为B,半径为r,圆B与圆C的切点为D,圆C:(x+4)2+y2=100的圆心为C(4,0),半径R=10,由动圆B与圆C相内切,可得|CB|=Rr=10|BD|,圆B经过点A(4,0),|BD|=|BA|,得|CB|=10|BA|,可得|BA|+|BC|=10,|AC|=810,点B的轨迹是以A、C为焦点的椭圆,设方程为(ab0),可得2a=10,c=4,a=5,b2=a2c2=9,得该椭圆的方程为+=1故答案为: +=115【答案】 【解析】解:根据点A,B的极坐标分别是(2,),(3,),可得A、B的直角坐标分别是(3,)、(,),故AB的斜率为,故直线AB的方程为 y=(x3),即x+3y12=0,所以O点到直线AB的距离是=,故答案为:【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题16【答案】6 【解析】解:|z|=1,|z3+4i|=|z(34i)|z|+|34i|=1+=1+5=6,|z3+4i|的最大值为6,故答案为:6【点评】本题考查复数求模,着重考查复数模的运算性质,属于基础题17【答案】20 【解析】解:(1+x)(x2+)6的展开式中,x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;又(x2+)6的展开式中,通项公式为 Tr+1=x123r,令123r=3,解得r=3,满足题意;令123r=2,解得r=,不合题意,舍去;所以展开式中x3的系数是=20故答案为:2018【答案】 【解析】解:直线l过原点且平分平行四边形ABCD的面积,则直线过BD的中点(3,2),故斜率为=,由斜截式可得直线l的方程为,故答案为【点评】本题考查直线的斜率公式,直线方程的斜截式三、解答题19【答案】 【解析】解:(I)函数f(x)=alnx+的导数为f(x)=,且直线y=2的斜率为0,又过点(1,2),f(1)=2b=2,f(1)=ab=0,解得a=b=1(II)当x1时,不等式f(x),即为(x1)lnx+(xk)lnx,即(k1)lnx+0令g(x)=(k1)lnx+,g(x)=+1+=,令m(x)=x2+(k1)x+1,当1即k1时,m(x)在(1,+)单调递增且m(1)0,所以当x1时,g(x)0,g(x)在(1,+)单调递增,则g(x)g(1)=0即f(x)恒成立当1即k1时,m(x)在上(1,)上单调递减,且m(1)0,故当x(1,)时,m(x)0即g(x)0,所以函数g(x)在(1,)单调递减,当x(1,)时,g(x)0与题设矛盾,综上可得k的取值范围为1,+) 20【答案】 【解析】()证明:BD为圆O的直径,ABAD,直线AE是圆O所在平面的垂线,ADAE,ABAE=A,AD平面ABE,ADBE;()解:多面体EFABCD体积V=VBAEFC+VDAEFC=2VBAEFC直线AE,CF是圆O所在平面的两条垂线,AECF,AEAC,AFACAE=CF=,AEFC为矩形,AC=2,SAEFC=2,作BMAC交AC于点M,则BM平面AEFC,V=2VBAEFC=2=多面体EFABCD体积的最大值为【点评】本题考查线面垂直,线线垂直,考查体积的计算,考查学生分析解决问题的能力,难度中等21【答案】 【解析】解:设z+=t,则 z2tz+10=01t6,=t2400,解方程得 z=i又z的实部和虚部都是整数,t=2或t=6,故满足条件的复数共4个:z=13i 或 z=3i22【答案】(1)或;(2)【解析】(2) . 无实根, 解得; 中只含有一个元素,仅有一个实根, 故舍去; 中只含有两个元素,使 两个实根为和, 需要满足方程组无根,故舍去, 综上所述.1111.Com考点:集合的运算及其应用.23【答案】【解析】【命题意图】本题考查椭圆的定义及方程、直线与椭圆的位置关系、平面向量数量积等基础知识,意在考查学生逻辑思维能力、运算求解能力、探索能力,以及分类讨论思想、待定系数法、设而不求法的应用下面证明时,恒成立当直线的斜率为0时,结论成立;当直线的斜率不为0时,设直线的方程为,由及,得,所以,=综上所述,在轴上存在点使得恒成立24【答案】 【解析】解:()平面PAB平面ABCD,平面PAB平面ABCD=AB,ABPAPA平面ABCD结合ABAD,可得分别以AB、AD、AP为x轴、y轴、z轴,建立空间直角坐标系oxyz,如图所示可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),P(0,0,) (0),得,DEAC且DEAP,AC、AP是平面PAC内的相交直线,ED平面PACED平面PED平面PED平面PAC()由()得平面PAC的一个法向量是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论