来凤县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
来凤县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
来凤县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
来凤县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
来凤县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

来凤县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 函数在定义域上的导函数是,若,且当时,设,则( )A B C D2 对于区间a,b上有意义的两个函数f(x)与g(x),如果对于区间a,b中的任意数x均有|f(x)g(x)|1,则称函数f(x)与g(x)在区间a,b上是密切函数,a,b称为密切区间若m(x)=x23x+4与n(x)=2x3在某个区间上是“密切函数”,则它的一个密切区间可能是( )A3,4B2,4C1,4D2,33 给出下列结论:平行于同一条直线的两条直线平行;平行于同一条直线的两个平面平行;平行于同一个平面的两条直线平行;平行于同一个平面的两个平面平行其中正确的个数是( )A1个 B2个 C3个 D4个4 已知m,n为不同的直线,为不同的平面,则下列说法正确的是( )Am,nmnBm,nmnCm,n,mnDn,n5 设函数,若对任意,都存在,使得,则实数的最大值为( )A B C. D46 下列函数中,为奇函数的是( )Ay=x+1By=x2Cy=2xDy=x|x|7 在ABC中,若2cosCsinA=sinB,则ABC的形状是( )A直角三角形B等边三角形C等腰直角三角形D等腰三角形8 已知f(x)在R上是奇函数,且f(x+4)=f(x),当x(0,2)时,f(x)=2x2,则f(7)=( )A2B2C98D989 二项式的展开式中项的系数为10,则( )A5 B6 C8 D10【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力10函数f(x)=的定义域为( )A1,2)B(1,+)C1,2)(2,+)D1,+)11函数f(x)=lnx的零点所在的大致区间是( )A(1,2)B(2,3)C(1,)D(e,+)12若函数f(x)的定义域为R,则“函数f(x)是奇函数”是“f(0)=0”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件二、填空题13命题:“xR,都有x31”的否定形式为14已知函数f(x)=,点O为坐标原点,点An(n,f(n)(nN+),向量=(0,1),n是向量与i的夹角,则+=15若点p(1,1)为圆(x3)2+y2=9的弦MN的中点,则弦MN所在直线方程为 16已知f(x)x(exaex)为偶函数,则a_17在复平面内,复数与对应的点关于虚轴对称,且,则_18把函数y=sin2x的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为三、解答题19(本小题满分12分)已知椭圆:的左、右焦点分别为,过点作垂直于轴的直线,直线垂直于点,线段的垂直平分线交于点.(1)求点的轨迹的方程;(2)过点作两条互相垂直的直线,且分别交椭圆于,求四边形面积的最小值.20设锐角三角形的内角所对的边分别为(1)求角的大小;(2)若,求21在锐角ABC中,角A、B、C的对边分别为a、b、c,且()求角B的大小;()若b=6,a+c=8,求ABC的面积22在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人,女性中有43人主要的休闲方式是看电视,其余人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,其余人主要的休闲方式是运动(1)根据以上数据建立一个22的列联表;(2)能否在犯错误的概率不超过0.01的前提下,认为休闲方式与性别有关系独立性检验观察值计算公式,独立性检验临界值表:P(K2k0)0.5050.0250.010.005k00.4551.3232.0723.8415.0246.6357.87923如图,在三棱柱中,(1)求证:平面;(2)若,求三棱锥的体积24已知奇函数f(x)=(cR)()求c的值;()当x2,+)时,求f(x)的最小值来凤县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】考点:函数的对称性,导数与单调性【名师点睛】函数的图象是研究函数性质的一个重要工具,通过函数的图象研究问题是数形结合思想应用的不可或缺的重要一环,因此掌握函数的图象的性质是我们在平常学习中要重点注意的,如函数满足:或,则其图象关于直线对称,如满足,则其图象关于点对称2 【答案】D【解析】解:m(x)=x23x+4与n(x)=2x3,m(x)n(x)=(x23x+4)(2x3)=x25x+7令1x25x+71,则有,2x3故答案为D【点评】本题考查了新定义函数和解一元二次不等式组,本题的计算量不大,新定义也比较容易理解,属于基础题3 【答案】B【解析】考点:空间直线与平面的位置关系【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键 4 【答案】D【解析】解:在A选项中,可能有n,故A错误;在B选项中,可能有n,故B错误;在C选项中,两平面有可能相交,故C错误;在D选项中,由平面与平面垂直的判定定理得D正确故选:D【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养5 【答案】A111.Com【解析】试题分析:设的值域为,因为函数在上的值域为,所以,因此至少要取遍中的每一个数,又,于是,实数需要满足或,解得考点:函数的性质.【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。首先求出,再利用转化思想将命题条件转化为,进而转化为至少要取遍中的每一个数,再利用数形结合思想建立不等式组:或,从而解得6 【答案】D【解析】解:由于y=x+1为非奇非偶函数,故排除A;由于y=x2为偶函数,故排除B;由于y=2x为非奇非偶函数,故排除C;由于y=x|x|是奇函数,满足条件,故选:D【点评】本题主要考查函数的奇偶性的判断,属于基础题7 【答案】D【解析】解:A+B+C=180,sinB=sin(A+C)=sinAcosC+sinCcosA=2cosCsinA,sinCcosAsinAcosC=0,即sin(CA)=0,A=C 即为等腰三角形故选:D【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础8 【答案】A【解析】解:因为f(x+4)=f(x),故函数的周期是4所以f(7)=f(3)=f(1),又f(x)在R上是奇函数,所以f(1)=f(1)=212=2,故选A【点评】本题考查函数的奇偶性与周期性9 【答案】B【解析】因为的展开式中项系数是,所以,解得,故选A10【答案】C【解析】解:要使函数f(x)有意义,则,即,解得x1且x2,即函数f(x)的定义域为1,2)(2,+)故选:C【点评】本题主要考查函数定义域的求法,要求熟练掌握常见函数成立的条件,比较基础11【答案】B【解析】解:函数的定义域为:(0,+),有函数在定义域上是递增函数,所以函数只有唯一一个零点又f(2)ln210,f(3)=ln30f(2)f(3)0,函数f(x)=lnx的零点所在的大致区间是(2,3)故选:B12【答案】A【解析】解:由奇函数的定义可知:若f(x)为奇函数,则任意x都有f(x)=f(x),取x=0,可得f(0)=0;而仅由f(0)=0不能推得f(x)为奇函数,比如f(x)=x2,显然满足f(0)=0,但f(x)为偶函数由充要条件的定义可得:“函数f(x)是奇函数”是“f(0)=0”的充分不必要条件故选:A二、填空题13【答案】x0R,都有x031 【解析】解:因为全称命题的否定是特称命题所以,命题:“xR,都有x31”的否定形式为:命题:“x0R,都有x031”故答案为:x0R,都有x031【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查14【答案】 【解析】解:点An(n,)(nN+),向量=(0,1),n是向量与i的夹角,=, =, =,+=+=1=,故答案为:【点评】本题考查了向量的夹角、数列“裂项求和”方法,考查了推理能力与计算能力,属于中档题15【答案】:2xy1=0解:P(1,1)为圆(x3)2+y2=9的弦MN的中点,圆心与点P确定的直线斜率为=,弦MN所在直线的斜率为2,则弦MN所在直线的方程为y1=2(x1),即2xy1=0故答案为:2xy1=016【答案】【解析】解析:f(x)是偶函数,f(x)f(x)恒成立,即(x)(exaex)x(exaex),a(exex)(exex),a1.答案:117【答案】-2【解析】【知识点】复数乘除和乘方【试题解析】由题知:所以故答案为:-218【答案】y=cosx 【解析】解:把函数y=sin2x的图象向左平移个单位长度,得,即y=cos2x的图象,把y=cos2x的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx的图象;故答案为:y=cosx三、解答题19【答案】(1);(2).【解析】试题分析:(1)求得椭圆的焦点坐标,连接,由垂直平分线的性质可得,运用抛物线的定义,即可得到所求轨迹方程;(2)分类讨论:当或中的一条与轴垂直而另一条与轴重合时,此时四边形面积当直线和的斜率都存在时,不妨设直线的方程为,则直线的方程为分别与椭圆的方程联立得到根与系数的关系,利用弦长公式可得,利用四边形面积即可得到关于斜率的式子,再利用配方和二次函数的最值求法,即可得出(2)当直线的斜率存在且不为零时,直线的斜率为,则直线的斜率为,直线的方程为,联立,得.111,.由于直线的斜率为,用代换上式中的。可得.,四边形的面积.由于,当且仅当,即时取得等号.易知,当直线的斜率不存在或斜率为零时,四边形的面积.综上,四边形面积的最小值为.考点:椭圆的简单性质1【思路点晴】求得椭圆的焦点坐标,由垂直平分线的性质可得,运用抛物线的定义,即可得所求的轨迹方程.第二问分类讨论,当或中的一条与轴垂直而另一条与轴重合时,四边形面积为.当直线和的斜率都存在时,分别设出的直线方程与椭圆联立得到根与系数的关系,利用弦长公式求得,从而利用四边形的面积公式求最值.20【答案】(1);(2)【解析】1111(2)根据余弦定理,得,所以.考点:正弦定理与余弦定理21【答案】 【解析】解:()由2bsinA=a,以及正弦定理,得sinB=,又B为锐角,B=,()由余弦定理b2=a2+c22accosB,a2+c2ac=36,a+c=8,ac=,SABC=22【答案】 【解析】解:(1)看电视运动合计男性213354女性432770合计6460124(2)所以不能在犯错误的概率不超过0.01的前提下认为休闲方式与性别有关系(12分)【点评】独立性检验是考查两个分类变量是否有关系,并且能较精确的给出这种判断的可靠程度的一种重要的统计方法,主要是通过k2的观测值与临界值的比较解决的23【答案】(1)证明见解析;(2).【解析】试题分析:(1)有线面垂直的性质可得,再由菱形的性质可得,进而有线面垂直的判定定理可得结论;(2)先证三角形为正三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论