阜城县第一中学校2018-2019学年上学期高二数学12月月考试题含解析_第1页
阜城县第一中学校2018-2019学年上学期高二数学12月月考试题含解析_第2页
阜城县第一中学校2018-2019学年上学期高二数学12月月考试题含解析_第3页
阜城县第一中学校2018-2019学年上学期高二数学12月月考试题含解析_第4页
阜城县第一中学校2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

阜城县第一中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 函数y=+的定义域是( )Ax|x1Bx|x1且x3Cx|x1且x3Dx|x1且x32 将函数(其中)的图象向右平移个单位长度,所得的图象经过点,则的最小值是( )A B C D 3 已知函数f(x)的图象如图,则它的一个可能的解析式为( )Ay=2By=log3(x+1)Cy=4Dy=4 已知复数z满足:zi=1+i(i是虚数单位),则z的虚部为( )AiBiC1D15 在ABC中,a,b,c分别是角A,B,C的对边,a=5,b=4,cosC=,则ABC的面积是( )A16B6C4D86 用一平面去截球所得截面的面积为2,已知球心到该截面的距离为1,则该球的体积是( )AB2C4D 7 椭圆=1的离心率为( )ABCD8 ,则( )A B C D9 数列中,对所有的,都有,则等于( )A B C D10 如果命题pq是真命题,命题p是假命题,那么( )A命题p一定是假命题B命题q一定是假命题C命题q一定是真命题D命题q是真命题或假命题11如果对定义在上的函数,对任意,均有成立,则称函数为“函数”.给出下列函数:;其中函数是“函数”的个数为( )A1 B2 C3 D 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大12某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111A B C D二、填空题13从等边三角形纸片ABC上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为14下列四个命题:两个相交平面有不在同一直线上的三个公交点经过空间任意三点有且只有一个平面过两平行直线有且只有一个平面在空间两两相交的三条直线必共面其中正确命题的序号是15已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=16袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为17直线l过原点且平分平行四边形ABCD的面积,若平行四边形的两个顶点为B(1,4),D(5,0),则直线l的方程为18已知点F是抛物线y2=4x的焦点,M,N是该抛物线上两点,|MF|+|NF|=6,M,N,F三点不共线,则MNF的重心到准线距离为三、解答题19若函数f(x)=ax(a0,且a1)在1,2上的最大值比最小值大,求a的值20已知椭圆的左焦点为F,离心率为,过点M(0,1)且与x轴平行的直线被椭圆G截得的线段长为(I)求椭圆G的方程;(II)设动点P在椭圆G上(P不是顶点),若直线FP的斜率大于,求直线OP(O是坐标原点)的斜率的取值范围 21计算:(1)8+()0;(2)lg25+lg2log29log3222某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:x24568y3040605070(1)画出散点图;(2)求线性回归方程;(3)预测当广告费支出7(百万元)时的销售额23已知椭圆C1: +x2=1(a1)与抛物线C:x2=4y有相同焦点F1()求椭圆C1的标准方程;()已知直线l1过椭圆C1的另一焦点F2,且与抛物线C2相切于第一象限的点A,设平行l1的直线l交椭圆C1于B,C两点,当OBC面积最大时,求直线l的方程24已知定义在的一次函数为单调增函数,且值域为(1)求的解析式;(2)求函数的解析式并确定其定义域阜城县第一中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:由题意得:,解得:x1或x3,故选:D【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题2 【答案】D考点:由的部分图象确定其解析式;函数的图象变换3 【答案】C【解析】解:由图可得,y=4为函数图象的渐近线,函数y=2,y=log3(x+1),y=的值域均含4,即y=4不是它们的渐近线,函数y=4的值域为(,4)(4,+),故y=4为函数图象的渐近线,故选:C【点评】本题考查的知识点是函数的图象,函数的值域,难度中档4 【答案】D【解析】解:由zi=1+i,得,z的虚部为1故选:D【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题5 【答案】D【解析】解:a=5,b=4,cosC=,可得:sinC=,SABC=absinC=8故选:D6 【答案】C【解析】解:用一平面去截球所得截面的面积为2,所以小圆的半径为: cm;已知球心到该截面的距离为1,所以球的半径为:,所以球的体积为: =4故选:C7 【答案】D【解析】解:根据椭圆的方程=1,可得a=4,b=2,则c=2;则椭圆的离心率为e=,故选D【点评】本题考查椭圆的基本性质:a2=b2+c2,以及离心率的计算公式,注意与双曲线的对应性质的区分8 【答案】A【解析】试题分析:,由于为增函数,所以.应为为增函数,所以,故.考点:比较大小9 【答案】C【解析】试题分析:由,则,两式作商,可得,所以,故选C考点:数列的通项公式10【答案】D【解析】解:命题“p或q”真命题,则命题p与命题q中至少有一个命题为真命题,又命题“非p”也是假命题,命题p为真命题故命题q为可真可假故选D【点评】本题考查的知识点是命题的真假判断与应用,其中熟练掌握复合命题真值表是解答本题的关键11【答案】第12【答案】【解析】试题分析:分段间隔为,故选D.考点:系统抽样二、填空题13【答案】 【解析】解:设大小正方形的边长分别为x,y,(x,y0)则+x+y+=3+,化为:x+y=3则x2+y2=,当且仅当x=y=时取等号这两个正方形的面积之和的最小值为故答案为:14【答案】 【解析】解:两个相交平面的公交点一定在平面的交线上,故错误;经过空间不共线三点有且只有一个平面,故错误;过两平行直线有且只有一个平面,正确;在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误,故正确命题的序号是,故答案为:15【答案】5 【解析】解:求导得:f(x)=3ax2+2bx+c,结合图象可得x=1,2为导函数的零点,即f(1)=f(2)=0,故,解得故=5故答案为:516【答案】 【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,方法二:先求出“第一次摸到红球”的概率为:P1=,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P2再求“第一次摸到红球且第二次也摸到红球”的概率为P=,根据条件概率公式,得:P2=,故答案为:【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题看准确事件之间的联系,正确运用公式,是解决本题的关键17【答案】 【解析】解:直线l过原点且平分平行四边形ABCD的面积,则直线过BD的中点(3,2),故斜率为=,由斜截式可得直线l的方程为,故答案为【点评】本题考查直线的斜率公式,直线方程的斜截式18【答案】 【解析】解:F是抛物线y2=4x的焦点,F(1,0),准线方程x=1,设M(x1,y1),N(x2,y2),|MF|+|NF|=x1+1+x2+1=6,解得x1+x2=4,MNF的重心的横坐标为,MNF的重心到准线距离为故答案为:【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离三、解答题19【答案】 【解析】解:由题意可得:当a1时,函数f(x)在区间1,2上单调递增,f(2)f(1)=a2a=a,解得a=0(舍去),或a=当 0a1时,函数f(x)在区间1,2上单调递减,f(1)f(2)=aa2=,解得a=0(舍去),或a=故a的值为或【点评】本题主要考查指数函数的单调性的应用,体现了分类讨论的数学思想,属于中档题20【答案】 【解析】解:(I)椭圆的左焦点为F,离心率为,过点M(0,1)且与x轴平行的直线被椭圆G截得的线段长为点在椭圆G上,又离心率为,解得椭圆G的方程为(II)由(I)可知,椭圆G的方程为点F的坐标为(1,0)设点P的坐标为(x0,y0)(x01,x00),直线FP的斜率为k,则直线FP的方程为y=k(x+1),由方程组消去y0,并整理得又由已知,得,解得或1x00设直线OP的斜率为m,则直线OP的方程为y=mx由方程组消去y0,并整理得由1x00,得m2,x00,y00,m0,m(,),由x01,得,x00,y00,得m0,m直线OP(O是坐标原点)的斜率的取值范围是(,)(,)【点评】本题考查椭圆方程的求法,考查直线的斜率的取值范围的求法,是中档题,解题时要认真审题,注意椭圆与直线的位置关系的合理运用21【答案】 【解析】解:(1)8+()0=21+1(3e)=e(2)lg25+lg2log29log32=12=1(6分)【点评】本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意对数、指数性质及运算法则的合理运用22【答案】 【解析】解:(1)(2)设回归方程为=bx+a则b=5/5=13805550/145552=6.5故回归方程为=6.5x+17.5(3)当x=7时, =6.57+17.5=63,所以当广告费支出7(百万元)时,销售额约为63(百万元)【点评】本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,这是解答正确的主要环节23【答案】 【解析】解:()抛物线x2=4y的焦点为F1(0,1),c=1,又b2=1,椭圆方程为: +x2=1 ()F2(0,1),由已知可知直线l1的斜率必存在,设直线l1:y=kx1由消去y并化简得x24kx+4=0直线l1与抛物线C2相切于点A=(4k)244=0,得k=1切点A在第一象限k=1ll1设直线l的方程为y=x+m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论