南海区第三中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
南海区第三中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
南海区第三中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
南海区第三中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
南海区第三中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷南海区第三中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 阅读如图所示的程序框图,运行相应的程序,若输出的的值等于126,则判断框中的可以是( )Ai4?Bi5?Ci6?Di7?2 已知直线xy+a=0与圆心为C的圆x2+y2+2x4y+7=0相交于A,B两点,且=4,则实数a的值为( )A或B或3C或5D3或53 已知复合命题p(q)是真命题,则下列命题中也是真命题的是( )A(p)qBpqCpqD(p)(q)4 下列四个命题中的真命题是( )A经过定点的直线都可以用方程表示B经过任意两个不同点、的直线都可以用方程表示C不经过原点的直线都可以用方程表示D经过定点的直线都可以用方程表示5 过抛物线焦点的直线与双曲线的一条渐近线平行,并交其抛物线于、两点,若,且,则抛物线方程为( )A B C D【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力6 设为虚数单位,则()A B C D7 在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是()A最多可以购买4份一等奖奖品 B最多可以购买16份二等奖奖品C购买奖品至少要花费100元 D共有20种不同的购买奖品方案8 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A至少有一个白球;都是白球B至少有一个白球;至少有一个红球C恰有一个白球;一个白球一个黑球D至少有一个白球;红、黑球各一个9 直线在平面外是指( )A直线与平面没有公共点B直线与平面相交C直线与平面平行D直线与平面最多只有一个公共点10若则的值为( ) A8 B C2 D 11已知双曲线的右焦点为F,若过点F且倾斜角为60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A(1,2B(1,2)C2,+)D(2,+)12使得(3x2+)n(nN+)的展开式中含有常数项的最小的n=( )A3B5C6D10二、填空题13已知函数f(x)=有3个零点,则实数a的取值范围是14已知函数f(x)=xm过点(2,),则m=15曲线C是平面内到直线l1:x=1和直线l2:y=1的距离之积等于常数k2(k0)的点的轨迹给出下列四个结论:曲线C过点(1,1);曲线C关于点(1,1)对称;若点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|+|PB|不小于2k;设p1为曲线C上任意一点,则点P1关于直线x=1、点(1,1)及直线y=1对称的点分别为P1、P2、P3,则四边形P0P1P2P3的面积为定值4k2其中,所有正确结论的序号是16经过A(3,1),且平行于y轴的直线方程为17如图,在平行四边形ABCD中,点E在边CD上,若在平行四边形ABCD内部随机取一个点Q,则点Q取自ABE内部的概率是18若点p(1,1)为圆(x3)2+y2=9的弦MN的中点,则弦MN所在直线方程为 三、解答题19甲、乙两位同学参加数学竞赛培训,在培训期间他们参加5次预赛,成绩如下:甲:78 76 74 90 82乙:90 70 75 85 80()用茎叶图表示这两组数据;()现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?说明理由20已知等差数列an,等比数列bn满足:a1=b1=1,a2=b2,2a3b3=1()求数列an,bn的通项公式;()记cn=anbn,求数列cn的前n项和Sn21已知椭圆C: +=1(ab0)与双曲线y2=1的离心率互为倒数,且直线xy2=0经过椭圆的右顶点()求椭圆C的标准方程;()设不过原点O的直线与椭圆C交于M、N两点,且直线OM、MN、ON的斜率依次成等比数列,求OMN面积的取值范围22设数列an的前n项和为Sn,a1=1,Sn=nann(n1)(1)求证:数列an为等差数列,并分别求出an的表达式;(2)设数列的前n项和为Pn,求证:Pn;(3)设Cn=,Tn=C1+C2+Cn,试比较Tn与的大小 23甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望24(本小题满分12分)已知向量满足:,.(1)求向量与的夹角;(2)求.南海区第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】 C【解析】解:模拟执行程序框图,可得S=0,i=1S=2,i=2不满足条件,S=2+4=6,i=3不满足条件,S=6+8=14,i=4不满足条件,S=14+16=30,i=5不满足条件,S=30+32=62,i=6不满足条件,S=62+64=126,i=7由题意,此时应该满足条件,退出循环,输出S的值为126,故判断框中的可以是i6?故选:C【点评】本小题主要考查循环结构、数列等基础知识根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基本知识的考查2 【答案】C【解析】解:圆x2+y2+2x4y+7=0,可化为(x+)2+(y2)2=8=4,22cosACB=4cosACB=,ACB=60圆心到直线的距离为,=,a=或5故选:C3 【答案】B【解析】解:命题p(q)是真命题,则p为真命题,q也为真命题,可推出p为假命题,q为假命题,故为真命题的是pq,故选:B【点评】本题考查复合命题的真假判断,注意pq全假时假,pq全真时真4 【答案】B【解析】考点:直线方程的形式.【方法点晴】本题主要考查了直线方程的表示形式,对于直线的点斜式方程只能表示斜率存在的直线;直线的斜截式方程只能表示斜率存在的直线;直线的饿两点式方程不能表示和坐标轴平行的直线;直线的截距式方程不能表示与坐标轴平行和过原点的直线,此类问题的解答中熟记各种直线方程的局限性是解答的关键.1115 【答案】C【解析】由已知得双曲线的一条渐近线方程为,设,则,所以,解得或,因为,故,故,所以抛物线方程为6 【答案】C【解析】【知识点】复数乘除和乘方【试题解析】故答案为:C7 【答案】D【解析】【知识点】线性规划【试题解析】设购买一、二等奖奖品份数分别为x,y,则根据题意有:,作可行域为:A(2,6),B(4,12),C(2,16)在可行域内的整数点有:(2,6),(2,7),(2,16),(3,9),(3,10),(3,14),(4,12),共11+6+1=18个。其中,x最大为4,y最大为16最少要购买2份一等奖奖品,6份二等奖奖品,所以最少要花费100元。所以A、B、C正确,D错误。故答案为:D8 【答案】D【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况,所以至少有一个白球,至多有一个白球不互斥;至少有一个白球,至少有一个红球不互斥;至少有一个白球,没有白球互斥且对立;至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,故选:D【点评】本题考查了互斥事件和对立事件,是基础的概念题9 【答案】D【解析】解:根据直线在平面外是指:直线平行于平面或直线与平面相交,直线在平面外,则直线与平面最多只有一个公共点故选D10【答案】B【解析】试题分析:,故选B。考点:分段函数。11【答案】C【解析】解:已知双曲线的右焦点为F,若过点F且倾斜角为60的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,离心率e2=,e2,故选C【点评】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件12【答案】B【解析】解:(3x2+)n(nN+)的展开式的通项公式为Tr+1=(3x2)nr2rx3r=x2n5r,令2n5r=0,则有n=,故展开式中含有常数项的最小的n为5,故选:B【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题二、填空题13【答案】(,1) 【解析】解:函数f(x)=有3个零点,a0 且 y=ax2+2x+1在(2,0)上有2个零点,解得a1,故答案为:(,1)14【答案】1 【解析】解:将(2,)代入函数f(x)得: =2m,解得:m=1;故答案为:1【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题15【答案】 【解析】解:由题意设动点坐标为(x,y),则利用题意及点到直线间的距离公式的得:|x+1|y1|=k2,对于,将(1,1)代入验证,此方程不过此点,所以错;对于,把方程中的x被2x代换,y被2y 代换,方程不变,故此曲线关于(1,1)对称正确;对于,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|x+1|,|PB|y1|PA|+|PB|2=2k,正确;对于,由题意知点P在曲线C上,根据对称性,则四边形P0P1P2P3的面积=2|x+1|2|y1|=4|x+1|y1|=4k2所以正确故答案为:【点评】此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性,属于基础题16【答案】x=3 【解析】解:经过A(3,1),且平行于y轴的直线方程为:x=3故答案为:x=317【答案】 【解析】解:由题意ABE的面积是平行四边形ABCD的一半,由几何概型的计算方法,可以得出所求事件的概率为P=,故答案为:【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题18【答案】:2xy1=0解:P(1,1)为圆(x3)2+y2=9的弦MN的中点,圆心与点P确定的直线斜率为=,弦MN所在直线的斜率为2,则弦MN所在直线的方程为y1=2(x1),即2xy1=0故答案为:2xy1=0三、解答题19【答案】 【解析】解:()用茎叶图表示如下:()=,=80,= (7480)2+(7680)2+(7880)2+(8280)2+(9080)2=32,= (7080)2+(7580)2+(8080)2+(8580)2+(9080)2=50,=,在平均数一样的条件下,甲的水平更为稳定,应该派甲去20【答案】 【解析】解:(I)设等差数列an的公差为d,等比数列bn的公比为q:a1=b1=1,a2=b2,2a3b3=11+d=q,2(1+2d)q2=1,解得或an=1,bn=1;或an=1+2(n1)=2n1,bn=3n1(II)当时,cn=anbn=1,Sn=n当时,cn=anbn=(2n1)3n1,Sn=1+33+532+(2n1)3n1,3Sn=3+332+(2n3)3n1+(2n1)3n,2Sn=1+2(3+32+3n1)(2n1)3n=1(2n1)3n=(22n)3n2,Sn=(n1)3n+1【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题21【答案】 【解析】解:()双曲线的离心率为,所以椭圆的离心率,又直线xy2=0经过椭圆的右顶点,右顶点为(2,0),即a=2,c=,b=1,椭圆方程为:()由题意可设直线的方程为:y=kx+m(k0,m0),M(x1,y1)、N(x2,y2)联立消去y并整理得:(1+4k2)x2+8kmx+4(m21)=0则,于是又直线OM、MN、ON的斜率依次成等比数列由m0得:又由=64k2m216(1+4k2)(m21)=16(4k2m2+1)0,得:0m22显然m21(否则:x1x2=0,则x1,x2中至少有一个为0,直线OM、ON中至少有一个斜率不存在,与已知矛盾) 设原点O到直线的距离为d,则故由m的取值范围可得OMN面积的取值范围为(0,1)【点评】本题考查直线与圆锥曲线的综合应用,弦长公式以及三角形的面积的表式,考查转化思想以及计算能力22【答案】 【解析】解:(1)证明:Sn=nann(n1)Sn+1=(n+1)an+1(n+1)nan+1=Sn+1Sn=(n+1)an+1nan2nnan+1nan2n=0an+1an=2,an是以首项为a1=1,公差为2的等差数列 由等差数列的通项公式可知:an=1+(n1)2=2n1,数列an通项公式an=2n1;(2)证明:由(1)可得,=(3),=,两式相减得=,=,=,=,nN*,2n1, 23【答案】 【解析】解:(1)设事件A为“两手所取的球不同色”,则P(A)=1(2)依题意,X的可能取值为0,1,2,左手所取的两球颜色相同的概率为=,右手所取的两球颜色相同的概率为=P(X=0)=(1)(1)=;P(X=1)=;P(X=2)=X的分布列为:X 0 1 2PEX=0+1+2=【点评】本题考查概率的求法和求离散型随机变量的分布列和数学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论