


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海南汇中学2012学年第一学期期中考试 高三数学参考答案暨评分标准满分:150分 完成时间:120分钟 命题人: 李志 吴臻 审核人:沈莉萍一、填空题(本大题共有14题,满分56分)考生应在答题纸编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1 ; 2 ; 3; 4; 5 ; 6 ; 7 ; 8 ; 9; 10(理);(文);11(理);(文); 12; 13(理);(文);14(理); (文)。二、选择题(本大题共有4题,满分20分) 每题有且只有一个正确答案,选对得5分,否则一律得零分.15( ); 16( ); 17. ( ); 18(理)( );(文)( ).三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号规定的区域内写出必要的步骤.19(本题满分12分,第(1)小题5分,第(2)小题7分)解: (1), .(2), ,所以,. 因此.20(本题满分13分,第(1)小题6分,第(2)小题7分)解: (1)底边,(2),所以,当即时,21( 本题满分14分,第(1)小题6分,第(2)小题8分)解: (1)时,又,所以(2)任取,因为,所以,又,所以.因此,当时,函数在上是减函数。22( 本题满分17分,第(1)小题4分,第(2)小题6分,第(3)小题7分)解: (1) (2)数表的前5行共有15个数,所以是第6行第三个数,从而. .(3)(理),因为和都是的单调递增函数,所以也是的单调递增函数。又因为,所以.(3)(文),因为和都是的单调递增函数,所以也是的单调递增函数。又因为,所以.23(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)解:(1)函数的极大值为2分函数的极小值为4分(2)(理)当时,函数无极大值点和极小值点 6分当时,函数的极大值点为,无极小值点 8分当时,函数的极大值点为,极小值点为 10分(3)(理)2分当时,函数在时取到最小值,但不是的极小值点,应舍;14分当时,函数在时取到最小值,但不是的极小值点,应舍;16分当时,欲在上有极小值,并且极小值就是它的最小值,则又,所以1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海市人民医院眼睑内外翻矫正术考核
- 晋中市中医院经皮肺穿刺活检术考核
- 2025年真空泵项目可行性研究报告申请报告
- 2025年秋外研版(三起)(2024)小学英语四年级上册(期中)综合词汇句子专项训练题及答案
- 2025年美食蔬菜制品加工建设项目可行性研究报告
- 互联网营销品牌推广策略2025年计划书可行性分析报告
- 通辽市人民医院呼吸道传染病防护与隔离技术年度授权复审题
- 2025年中国炭载贵金属催化剂行业市场前景预测及投资价值评估分析报告
- 聚乙醇酸(PGA)项目可行性研究报告
- 2025年投资项目立项报告
- 血小板低温保存优化-洞察阐释
- DB4403T 508-2024《生产经营单位锂离子电池存储使用安全规范》
- 国家开放大学《人文英语4 》期末机考题库
- T/CET 411-2024铁路场所LED照明技术规范
- 储能行业现状及发展趋势
- 中国艾滋病诊疗指南(2024版)解读课件
- 麻醉医学生职业规划
- 供应链管理在航空业的挑战教学课件
- 2025【光伏项目工程承包施工合同】工程承包施工合同范本
- 《X射线计算机体层成像儿童诊断参考水平标准》解读
- 露天开采铝矿土石方剥离工程施工方案-2
评论
0/150
提交评论