


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
我看微积分方程在实际生活中的应用 冯天昊 (华中科技大学文华学院 环境工程 100205021112)微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分在实际生活中无处不在,可以说和我们的生活密切相关。微积分的应用可以体现在生活中很多不同的方面。微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。 首先,先介绍一下微积分。微积分是研究函数的微分、积分以及有关概念和应用的数学分支,是建立在实数、函数和极限的基础上的。极限和微积分的概念可以追溯到古代。到了十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,理论基础是不牢固的。直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学个分支中,有越来越广泛的应用,特别是计算机的发明更有助于这些应用的不断发展。微积分学是微分学和积分学的总称。牛顿、莱布尼兹发明微积分以后,人们才有能力把握运动和过程。有了微积分,就有了工业革命,就有了大工业生产,也就有了现代化的社会。航天飞机、宇宙飞船等现代化交通工具都是在微积分的帮助下制造出来的。微积分在人类社会从农业文明跨入工业文明的过程中起到了决定性的作用。微积分是为了解决变量的瞬时变化率而存在的。从数学的角度讲,是研究变量在函数中的作用。从物理的角度讲,是为了解决长期困扰人们的关于速度与加速度的定义的问题。“变”这个字是微积分最大的奥义。因此,了解微积分在生活中的应用对于我们解决实际问题有很大的帮助。微积分的基本内容 研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分析。本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。微积分的基本概念和内容包括微分学和积分学。微分学的主要内容包括:极限理论、导数、微分等。积分学的主要内容包括:定积分、不定积分等。微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律。此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。数学的价值不仅在于掌握知识,而且数字是解决生活中世纪问题的重要工具,并能促使人类智慧的进步。通过数学不断发展,改变了人们的观察能力,思维能力,分析能力以及个人素质等,以更好的思维方式知道行动,能适应当前发展迅速的新社会,新形势。本文将介个微积分在生活中的多方面应用,对微积分只是进行深入探索。在现实生活中,我们身边的一切事物都能为数学研究提供服务,实际上,微积分本身就存在于生活中的各项事物中,只有不断深入挖掘,才能透过现象看本质,将抽象的数学付诸于具体事物中,也就是实现“具体抽象具体”的思维方式,以求不断进步,不断完善。在物理中的应用:究变力做功问题时;对于恒力做功,我们可以利用公式直接求出;但对于变力,我们不能利用公式;这种情况下,我们要借助于微积分,我们可以把位移无限细分,在每一个小位移上,力的变化很小,可以看作是恒力,根据公式算出力所作的功;然后把每一个小位移上的功无限求和,那么就可以求出变力做的总功是多少。匀速直线运动,位移度之间的关系是x=vt,但是如果物体的速度是时刻变化的,那么如何求位移呢?这个问题的解决就用到了微积分。把物体运动的时间无限细分,在每个单位时间内,物体的速度变化是很小的,就可以认为无提示匀速直线运动,根据已有的攻势求解再把所有的位移加起来,就能够得到总的位移了。在经济上的应用:际需求与边际供给:设需求函数Q=f(p)在点p处可导(其中Q为需求量,P为商品价格),则其边际函数Q=f(p)称为边际需求函数,简称边际需求。类似地,若供给函数Q=Q(P)可导(其中Q为供给量,P为商品价格),则其边际函数Q=Q(p)称为边际供给函数,简称边际供给。际成本函数:总成本函数C=C(Q)=C0+C1(Q);平均成本函数=(Q)=C(Q)Q;边际成本函数C=C(Q)C(Q0)称为当产量为Q0时的边际成本,其经济意义为:当产量达到Q0时,如果增减一个单位产品,则成本将相应增减C(Q0)个单位。边际收益函数:总收益函数R=R(Q);平均收益函数=(Q);边际收益函数R=R(Q)R(Q0)称为当商品销售量为Q0时的边际收益。其经济意义为:当销售量达到Q0时,如果增减一个单位产品,则收益将相应地增减R(Q0)个单位。边际利润函数:润函数L=L(Q)=R(Q)-C(Q);平均利润函数;=(Q)边际利润函数L=L(Q)=R(Q)-C(Q).L(Q0)称为当产量为Q0时的边际利润,其经济意义是:当产量达到Q0时,如果增减一个单位产品,则利润将相应增减L(Q0)个单位。接下来举几个更加细致的例子来说明微积分在生活中的运用:微积分在排队等待中的运用(夹逼定理):在数列的夹逼定理中,画出3跳与轴线垂直的直线,分别代表3个垂直于平面的平面,从左到右剑气记为X,a,Z,并将a假设为固定形式,X,Y都向a无限趋近。此时在X与Y之间随意放入平面Z,此值是无限向a趋近,这就是夹逼定理。联系到实际生活中,在排队的过程中,很多人排成一列长队,后面的人越来越多,那么加载期中的人就不必考虑多长时间能拍排到自己,就会被后面的热播“加持”到购票的窗口。微积分在投资决策中的运用:初等数学在经济生活中的应用十分广泛,例如在投资决策中,如果以均匀流的存款方式,也就是将资金以流水一样的方式定期不断存入银行中,那么计算1年后的中价值就可以通过定积分的方式。例如某企业一次性投资某项目2亿元,并据顶一年后建成,获得经济回报。如果忽略资金的时间价值,那么5年时间就能收回成本,但是如果将资金的时间价值考虑进来,可能情况就是有所变化。因此,微积分的应用,让投资更趋向于理性化,能够风险,提高回报。“微元法”计算例题体积在切菜中的应用:在研究积分计算平行界面时,假设空间中的某个立体面,有一个曲面和垂直于x轴的两个平面围城,如果使用任一点并与x轴的平面截例题垂直,所得的截面面积也就是一致的连续函数,此例题体积就能通过定积分表示。并通过“微元法”得出结论。此种方法在生活中的应用,可考虑为切黄瓜时,将黄瓜放在水平的砧板上,菜刀垂直于砧板的方向切掉黄瓜的两端,也就是所求体积的立体空间。将见个叫嚣距离且垂直于砧板方向切下的一个黄瓜片,视为一个支柱体,这个体积也就等于截面面积乘以厚度,如果将这根黄瓜切成若干片,每片越薄,体积值就越精确。那么如果将其无限细分,再获得无限和,这正是定积分的最好应用。综上所述,可以看出来,微积分的发明和使用不是一蹴而就的,是经过无数代人的只会的结晶才能达到今天的成就。微积分在我们现实生活中具有重要意义,利用好微积分能帮助我们得到问题的最优化解决。我们应当好好学习微积分这一有用的数学工具,并把它用于实
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 经济学基础理论与现实应用分析试题
- 记忆里的那个英雄人物作文7篇
- 农业自然灾害防控合作协议
- 专利申请及技术转让出资证明书(8篇)
- 产品购销协议合同书
- 环境科学污水处理案例分析试题
- 2025美甲师高级考试试卷:美甲行业创新发展策略与市场分析
- 数学分析基础应用题库
- 2025年工艺品及其他制造产品项目立项申请报告
- 2025年征信国际合作案例分析试题集
- 医疗废物污水培训课件
- 设备维保的预防性维修与预防性管理
- 2022-2023学年湖北省黄冈市武穴市七年级(下)期末历史试卷(含解析)
- 2024年江苏瑞海投资控股集团有限公司招聘笔试参考题库含答案解析
- 山东省济南市南山区2022-2023学年六年级下学期期末考试语文试题
- 物业员工压力管理培训课件
- 《眼球的结构与功能》课件
- 中小学人工智能教育方案的培训与支持机制
- 小学《综合实践活动》学业水平评价方案
- 可用性控制程序
- T73继电器组装生产线技术方案
评论
0/150
提交评论