版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省潍坊市第一中学2025年高二上数学期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆:和点,是圆上一点,线段的垂直平分线交于点,则点的轨迹方程是:()A. B.C. D.2.已知点是抛物线的焦点,点为抛物线上的任意一点,为平面上点,则的最小值为A.3 B.2C.4 D.3.已知数列是等比数列,,数列是等差数列,,则的值是()A. B.C. D.4.设村庄外围所在曲线的方程可用表示,村外一小路所在直线方程可用表示,则从村庄外围到小路的最短距离为()A. B.C. D.5.若直线与双曲线相交,则的取值范围是A. B.C. D.6.已知正方体的棱长为1,且满足,则的最小值是()A. B.C. D.7.直线的倾斜角是()A. B.C. D.8.从1,2,3,4,5中随机抽取三个数,则这三个数能成为一个三角形三边长的概率为()A. B.C. D.9.求点关于x轴的对称点的坐标为()A. B.C. D.10.等比数列的各项均为正数,已知向量,,且,则A.12 B.10C.5 D.11.将数列中的各项依次按第一个括号1个数,第二个括号2个数,第三个括号4个数,第四个括号8个数,第五个括号16个数,…,进行排列,,,…,则以下结论中正确的是()A.第10个括号内的第一个数为1025 B.2021在第11个括号内C.前10个括号内一共有1025个数 D.第10个括号内的数字之和12.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆,分别是椭圆的上、下顶点,是左顶点,为左焦点,直线与相交于点,则________14.若直线与直线相互平行,则实数___________.15.总体由编号为01,02,…,30的30个个体组成.选取方法是从下面随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为____________.66065747173407275017362523611665118918331119921970058102057864532345647616.已知直线与,若,则实数a的值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点与曲线的右焦点重合.(1)求抛物线的标准方程;(2)若抛物线上的点满足,求点的坐标.18.(12分)已知定圆,过的一条动直线与圆相交于、两点,(1)当与定直线垂直时,求出与的交点的坐标,并证明过圆心;(2)当时,求直线的方程19.(12分)已知数列的前项和为,且满足,,成等比数列,.(1)求数列的通项公式;(2)令,求数列的前项和.20.(12分)已知函数(1)当在处取得极值时,求函数的解析式;(2)当的极大值不小于时,求的取值范围21.(12分)已知,命题p:对任意,不等式恒成立;命题q:存在,使得不等式成立;(1)若p为真命题,求a的取值范围;(2)若为真命题,求a的取值范围22.(10分)已知:,:.(1)当时,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先由在线段的垂直平分线上得出,再由题意得出,进而由椭圆定义可求出点的轨迹方程.【详解】如图,因为在线段的垂直平分线上,所以,又点在圆上,所以,因此,点在以、为焦点的椭圆上.其中,,则.从而点的轨迹方程是.故选:B.2、A【解析】作垂直准线于点,根据抛物线的定义,得到,当三点共线时,的值最小,进而可得出结果.【详解】如图,作垂直准线于点,由题意可得,显然,当三点共线时,的值最小;因为,,准线,所以当三点共线时,,所以.故选A【点睛】本题主要考查抛物线上任一点到两定点距离的和的最值问题,熟记抛物线的定义与性质即可,属于常考题型.3、B【解析】根据等差数列和等比数列下标和的性质即可求解.【详解】为等比数列,,,,;为等差数列,,,,,∴.故选:B.4、B【解析】求出圆心到直线距离,减去半径即为答案.【详解】圆心到直线的距离,则从村庄外围到小路的最短距离为故选:B5、C【解析】联立直线和双曲线的方程得到,即得的取值范围.【详解】联立直线和双曲线的方程得当,即时,直线和双曲线的渐近线重合,所以直线与双曲线没有公共点.当,即时,,解之得.故选:C.【点睛】本题主要考查直线和双曲线的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力.6、C【解析】由空间向量共面定理可得点四点共面,从而将求的最小值转化为求点到平面的距离,再根据等体积法计算.【详解】因为,由空间向量的共面定理可知,点四点共面,即点在平面上,所以的最小值为点到平面的距离,由正方体棱长为,可得是边长为的等边三角形,则,,由等体积法得,,所以,所以的最小值为.故选:C【点睛】共面定理的应用:设是不共面的四点,则对空间任意一点,都存在唯一的有序实数组使得,说明:若,则四点共面.7、A【解析】将直线方程化为斜截式,由此确定斜率;根据斜率和倾斜角关系可得结果.【详解】设直线的倾斜角为,则,由得:,则斜率,.故选:A.8、C【解析】列举出所有情况,然后根据两边之和大于第三边数出能构成三角形的情况,进而得到答案.【详解】5个数取3个数的所有情况如下:{1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5}共10种情况,而能构成三角形的情况有{2,3,4;2,4,5;3,4,5}共3种情况,故所求概率.故选:C.9、D【解析】根据点关于坐标轴的对称点特征,直接写出即可.【详解】A点关于x轴对称点,横坐标不变,纵坐标与竖坐标为原坐标的相反数,故点的坐标为,故选:D10、C【解析】利用数量积运算性质、等比数列的性质及其对数运算性质即可得出【详解】向量=(,),=(,),且•=4,∴+=4,由等比数列的性质可得:=……===2,则log2(•)=故选C【点睛】本题考查数量积运算性质、等比数列的性质及其对数运算性质,考查推理能力与计算能力,属于中档题11、D【解析】由第10个括号内的第一个数为数列的第512项,最后一个数为数列的第1023项,进行分析求解即可【详解】由题意可得,第个括号内有个数,对于A,由题意得前9个括号内共有个数,所以第10个括号内的第一个数为数列的第512项,所以第10个括号内的第一个数为,所以A错误,对于C,前10个括号内共有个数,所以C错误,对于B,令,得,所以2021为数列的第1011项,由AC选项的分析可得2021在第10个括号内,所以B错误,对于D,因为第10个括号内的第一个数为,最后一个数为,所以第10个括号内的数字之和为,所以D正确,故选:D【点睛】关键点点睛:此题考查数列的综合应用,解题的关键是由题意确定出第10个括号内第一个数和最后一个数分别对应数列的哪一项,考查分析问题的能力,属于较难题12、B【解析】根据充分条件和必要条件的概念即可判断.【详解】∵,∴“”是“”的必要不充分条件.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】先求出顶点和焦点坐标,求出直线直线与的斜率,利用到角公式求出的正切值,进而求出正弦值.【详解】由可得:,所以,,,,故,由到角公式得:,其中,所以.故答案为:14、##【解析】由题意可得,从而可求出的值【详解】因为直线与直线相互平行,所以,解得,故答案为:15、23【解析】根据随机表,由编号规则及读表位置列举出前5个符合要求的编号,即可得答案.【详解】由题设,依次得到的数字为57,47,17,34,07,27,50,17,36,25,23,……根据编号规则符合要求的依次为17,07,27,25,23,……所以第5个个体编号为23.故答案为:23.16、【解析】由可得,从而可求出实数a的值【详解】因为直线与,且,所以,解得,故答案:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)求出双曲线的右焦点坐标,可求出的值,即可得出抛物线的标准方程;(2)设点,由抛物线的定义求出的值,代入抛物线的方程可求得的值,即可得出点的坐标.【详解】(1)由双曲线方程可得,,所以,解得.则曲线的右焦点为,所以,.因此,抛物线的标准方程为;(2)设,由抛物线的定义及已知可得,解得.代入抛物线方程可得,解得,所以点的坐标为或.18、(1),证明见解析;(2)或.【解析】(1)根据题意可设直线的方程为,将点的坐标代入直线的方程,可求得的值,再将直线、的方程联立,可得出这两条直线的交点的坐标,将圆心的坐标代入直线的方程可证得结论成立;(2)利用勾股定理可求得圆心到直线的距离,对直线的斜率是否存在进行分类讨论,设出直线方程,利用点到直线的距离公式求出参数的值,即可得出直线的方程.【小问1详解】解:当直线与定直线垂直时,可设直线的方程为,将点的坐标代入直线的方程可得,则,此时,直线的方程为,联立可得,即点,圆心的坐标为,因为,故直线过圆心.【小问2详解】解:设圆心到直线的距离为,则.当直线的斜率不存在时,直线的方程为,此时圆心到直线的距离为,合乎题意;当直线的斜率存在时,可设直线的方程为,即,由题意可得,解得,此时直线的方程为,即.综上所述,直线的方程为或.19、(1);(2).【解析】(1)由可得数列是公差为2的等差数列,再由,,成等比数列,列方程可求出,从而可求得数列的通项公式;(2)由(1)可得,然后利用裂项相消求和法可求出【详解】解:(1)由,可得,即数列是公差为2的等差数列.所以,,.由题意得,解得,所以.(2)由(1)可得,所以数列的前项和.20、(1);(2).【解析】(1)对函数求导,根据求出m,并验证此时函数在x=1处取得极值,进而求得答案;(2)对函数求导,进而求出函数的单调区间和极大值,然后求出m的范围.【小问1详解】因为,所以.因为在处取得极值,所以,所以,此时,时,,单调递减,时,,单调递增,即在处取得极小值,故.【小问2详解】,令,解得.时,,单调递增,时,,单调递减,时,,单调递增.,即的取值范围是.21、(1)(2)【解析】(1)利用判别式可求的取值范围,注意就是否为零分类讨论;(2)根据题设可得真或真,后者可用参变分离求出的取值范围,结合(1)可求的取值范围.【小问1详解】当p为真命题时,当时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年医院类器官技术应用研究合同
- 长垣烹饪职业技术学院《品牌运营课程设计》2024-2025学年第一学期期末试卷
- 单心室Fontan术后个案护理
- 大叶性肺炎合并感染性心内膜炎个案护理
- 延安大学西安创新学院《综艺主持》2024-2025学年第一学期期末试卷
- 山东省滕州市盖村中学2026届生物高一第一学期期末质量跟踪监视试题含解析
- 禽类分枝杆菌感染护理
- 气胸患者心理护理与心理支持策略
- 2026年中考数学复习热搜题之分式
- 医学生基础医学 床旁血滤护理课件
- 2025中国高净值人群金融投资需求与趋势白皮书
- 2025年天翼云高级运维工程师认证参考试题库(含答案)
- 医院合作体检协议书
- 2023年职业技能鉴定考试(老年人能力评估师)经典试题及答案
- 八年级语文下册第三单元《红色经典》“表达交流”综合实践志趣北师大版教案
- 茶叶茶山场转让协议书
- 活动执行协议合同书
- 2025年超星尔雅学习通《生物学与生命科学》考试备考题库及答案解析
- 交付管理岗转正答辩
- 落实企业安全生产主体责任知识试题及答案
- 2025广东东莞市樟木头镇招聘编外聘用人员14人笔试考试参考题库及答案解析
评论
0/150
提交评论