![[公务员考试]数字推理题经典汇总.doc_第1页](http://file.renrendoc.com/FileRoot1/2019-2/24/4282bd6e-f7db-4b76-a648-4e554f523e55/4282bd6e-f7db-4b76-a648-4e554f523e551.gif)
![[公务员考试]数字推理题经典汇总.doc_第2页](http://file.renrendoc.com/FileRoot1/2019-2/24/4282bd6e-f7db-4b76-a648-4e554f523e55/4282bd6e-f7db-4b76-a648-4e554f523e552.gif)
![[公务员考试]数字推理题经典汇总.doc_第3页](http://file.renrendoc.com/FileRoot1/2019-2/24/4282bd6e-f7db-4b76-a648-4e554f523e55/4282bd6e-f7db-4b76-a648-4e554f523e553.gif)
![[公务员考试]数字推理题经典汇总.doc_第4页](http://file.renrendoc.com/FileRoot1/2019-2/24/4282bd6e-f7db-4b76-a648-4e554f523e55/4282bd6e-f7db-4b76-a648-4e554f523e554.gif)
![[公务员考试]数字推理题经典汇总.doc_第5页](http://file.renrendoc.com/FileRoot1/2019-2/24/4282bd6e-f7db-4b76-a648-4e554f523e55/4282bd6e-f7db-4b76-a648-4e554f523e555.gif)
已阅读5页,还剩45页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数字推理第三部分: 数字推理题的各种规律一题型: 等差数列及其变式 【例题1】2,5,8,() A 10 B 11 C 12 D 13 【解答】从上题的前3个数字可以看出这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。题中第二个数字为5,第一个数字为2,两者的差为3,由观察得知第三个、第二个数字也满足此规律,那么在此基础上对未知的一项进行推理,即8+3=11,第四项应该是11,即答案为B。 【例题2】3,4,6,9,(),18 A 11 B 12 C 13 D 14 【解答】答案为C。这道题表面看起来没有什么规律,但稍加改变处理,就成为一道非常容易的题目。顺次将数列的后项与前项相减,得到的差构成等差数列1,2,3,4,5,。显然,括号内的数字应填13。在这种题中,虽然相邻两项之差不是一个常数,但这些数字之间有着很明显的规律性,可以把它们称为等差数列的变式。 等比数列及其变式 【例题3】3,9,27,81() A 243 B 342 C 433 D 135 【解答】答案为A。这也是一种最基本的排列方式,等比数列。其特点为相邻两个数字之间的商是一个常数。该题中后项与前项相除得数均为3,故括号内的数字应填243。 【例题4】8,8,12,24,60,() A 90 B 120 C 180 D 240 【解答】答案为C。该题难度较大,可以视为等比数列的一个变形。题目中相邻两个数字之间后一项除以前一项得到的商并不是一个常数,但它们是按照一定规律排列的;1,1.5,2,2.5,3,因此括号内的数字应为603=180。这种规律对于没有类似实践经验的应试者往往很难想到。我们在这里作为例题专门加以强调。该题是1997年中央国家机关录用大学毕业生考试的原题。 【例题5】8,14,26,50,() A 76 B 98 C 100 D 104 【解答】答案为B。这也是一道等比数列的变式,前后两项不是直接的比例关系,而是中间绕了一个弯,前一项的2倍减2之后得到后一项。故括号内的数字应为502-2=98。 等差与等比混合式 【例题6】5,4,10,8,15,16,(),() A 20,18 B 18,32 C 20,32 D 18,32 【解答】此题是一道典型的等差、等比数列的混合题。其中奇数项是以5为首项、等差为5的等差数列,偶数项是以4为首项、等比为2的等比数列。这样一来答案就可以容易得知是C。这种题型的灵活度高,可以随意地拆加或重新组合,可以说是在等比和等差数列当中的最有难度的一种题型。 求和相加式与求差相减式 【例题7】34,35,69,104,() A 138 B 139 C 173 D 179 【解答】答案为C。观察数字的前三项,发现有这样一个规律,第一项与第二项相加等于第三项,34+35=69,这种假想的规律迅速在下一个数字中进行检验,35+69=104,得到了验证,说明假设的规律正确,以此规律得到该题的正确答案为173。在数字推理测验中,前两项或几项的和等于后一项是数字排列的又一重要规律。 【例题8】5,3,2,1,1,() A -3 B -2 C 0 D 2 【解答】这题与上题同属一个类型,有点不同的是上题是相加形式的,而这题属于相减形式,即第一项5与第二项3的差等于第三项2,第四项又是第二项和第三项之差所以,第四项和第五项之差就是未知项,即1-1=0,故答案为C。 求积相乘式与求商相除式 【例题9】2,5,10,50,() A 100 B 200 C 250 D 500 【解答】这是一道相乘形式的题,由观察可知这个数列中的第三项10等于第一、第二项之积,第四项则是第二、第三两项之积,可知未知项应该是第三、第四项之积,故答案应为D。 【例题10】100,50,2,25,() A 1 B 3 C 2/25 D 2/5 【解答】这个数列则是相除形式的数列,即后一项是前两项之比,所以未知项应该是2/25,即选C。 求平方数及其变式 【例题11】1,4,9,(),25,36 A 10 B 14 C 20 D 16 【解答】答案为D。这是一道比较简单的试题,直觉力强的考生马上就可以作出这样的反应,第一个数字是1的平方,第二个数字是2的平方,第三个数字是3的平方,第五和第六个数字分别是5、6的平方,所以第四个数字必定是4的平方。对于这类问题,要想迅速作出反应,熟练掌握一些数字的平方得数是很有必要的。 【例题12】66,83,102,123,() A 144 B 145 C 146 D 147 【解答】答案为C。这是一道平方型数列的变式,其规律是8,9,10,11,的平方后再加2,故括号内的数字应为12的平方再加2,得146。这种在平方数列基础上加减乘除一个常数或有规律的数列,初看起来显得理不出头绪,不知从哪里下手,但只要把握住平方规律,问题就可以划繁为简了。 求立方数及其变式 【例题13】1,8,27,() A 36 B 64 C 72 D81 【解答】答案为B。各项分别是1,2,3,4的立方,故括号内应填的数字是64。 【例题14】0,6,24,60,120,() A 186 B 210 C 220 D 226 【解答】答案为B。这也是一道比较有难度的题目,但如果你能想到它是立方型的变式,问题也就解决了一半,至少找到了解决问题的突破口,这道题的规律是:第一个数是1的立方减1,第二个数是2的立方减2,第三个数是3的立方减3,第四个数是4的立方减4,依此类推,空格处应为6的立方减6,即210。 双重数列 【例题15】257,178,259,173,261,168,263,() A 275 B 279 C 164 D 163 【解答】答案为D。通过考察数字排列的特征,我们会发现,第一个数较大,第二个数较小,第三个数较大,第四个数较小,。也就是说,奇数项的都是大数,而偶数项的都是小数。可以判断,这是两项数列交替排列在一起而形成的一种排列方式。在这类题目中,规律不能在邻项之间寻找,而必须在隔项中寻找。我们可以看到,奇数项是257,259,261,263,是一种等差数列的排列方式。而偶数项是178,173,168,(),也是一个等差数列,所以括号中的数应为168-5=163。顺便说一下,该题中的两个数列都是以等差数列的规律排列,但也有一些题目中两个数列是按不同规律排列的,不过题目的实质没有变化。 两个数列交替排列在一列数字中,也是数字推理测验中一种较常见的形式。只有当你把这一列数字判断为多组数列交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经80%了。二、解题技巧 数字推理题的解题方法 数字推理题难度较大,但并非无规律可循,了解和掌握一定的方法和技巧,对解答数字推理问题大有帮助。 1快速扫描已给出的几个数字,仔细观察和分析各数之间的关系,尤其是前三个数之间的关系,大胆提出假设,并迅速将这种假设延伸到下面的数,如果能得到验证,即说明找出规律,问题即迎刃而解;如果假设被否定,立即改变思考角度,提出另外一种假设,直到找出规律为止。 2推导规律时,往往需要简单计算,为节省时间,要尽量多用心算,少用笔算或不用笔算。 3空缺项在最后的,从前往后推导规律;空缺项在最前面的,则从后往前寻找规律;空缺项在中间的可以两边同时推导。 4若自己一时难以找出规律,可用常见的规律来“对号入座”,加以验证。常见的排列规律有: (1)奇偶数规律:各个数都是奇数(单数)或偶数(双数); (2)等差:相邻数之间的差值相等,整个数字序列依次递增或递减。 (3)等比:相邻数之间的比值相等,整个数字序列依次递增或递减; 如:2 4 8 16 32 64() 这是一个“公比”为2(即相邻数之间的比值为2)的等比数列,空缺项应为128。 (4)二级等差:相邻数之间的差或比构成了一个等差数列; 如:4 2 2 3 6 15 相邻数之间的比是一个等差数列,依次为:0.5、1、1.5、2、2.5。 (5)二级等比数列:相邻数之间的差或比构成一个等比数理; 如:0 1 3 7 15 31() 相邻数之间的差是一个等比数列,依次为1、2、4、8、16,空缺项应为63。 (6)加法规律:前两个数之和等于第三个数,如例题23; (7)减法规律:前两个数之差等于第三个数; 如:5 3 2 1 1 0 1() 相邻数之差等于第三个数,空缺项应为-1。 (8)乘法(除法)规律:前两个数之乘积(或相除)等于第三个数; (9)完全平方数:数列中蕴含着一个完全平方数序列,或明显、或隐含; 如:2 3 10 15 26 35() 1*1+1=2, 2*2-1=3,3*3+1=10,4*4-1=15.空缺项应为50。 (10)混合型规律:由以上基本规律组合而成,可以是二级、三级的基本规律,也可能是两个规律的数列交叉组合成一个数列。 如:1 2 6 15 31() 相邻数之间的差是完全平方序列,依次为1、4、9、16,空缺项应为31+25=56。分:数字推理题典!4,18,56,130,( )A.26 B.24 C.32 D.16答案是B,各项除3的余数分别是1.0.2.1 0.对于1、0、2、1、0,每三项相加=3、3、3 等差1,3,4,8,16,()A.26 B.24 C.32 D.16我选B3-1=28-4=424-16=8可以看出2,4,8为等比数列1,1,3,7,17,41, ( ) A89 B99 C109 D119 我选B1*2+1=32*3+1=72*7+3=172*41+17=991,3,4,8,16,()A.26 B.24 C.32 D.16我选 C1+3=41+3+4=81+3+4+8=321,5,19,49,109,( ) 。A.170 B.180 C 190 D.2001*1+4=55*3+4=199*5+4=4913*7+4=9517*9+4=1574,18,56,130,( )A216 B217 C218 D219我搜了一下,以前有人问过,说答案是A如果选A的话,我又一个解释每项都除以4=取余数0、2、0、2、0仅供参考:)1. 256 ,269 ,286 ,302 ,() A.254 B.307 C.294 D.316 解析: 2+5+6=13 256+13=269 2+6+9=17 269+17=2862+8+6=16 286+16=302?=302+3+2=3072. 72 , 36 , 24 , 18 , ( ) A.12 B.16 C.14.4 D.16.4解析:(方法一)相邻两项相除, 72 36 24 18 / / / 2/1 3/2 4/3(分子与分母相差1且前一项的分子是后一项的分母) 接下来貌似该轮到5/4,而18/14.4=5/4. 选C(方法二)612=72, 66=36, 64=24, 63 =18, 6X 现在转化为求X12,6,4,3,X12/6 ,6/4 , 4/3 ,3/X化简得2/1,3/2,4/3,3/X,注意前三项有规律,即分子比分母大一,则3/X=5/4可解得:X=12/5再用612/5=14.43. 8 , 10 , 14 , 18 ,( ) A. 24 B. 32 C. 26 D. 20分析:8,10,14,18分别相差2,4,4,?可考虑满足2/4=4/?则?8所以,此题选188264. 3 , 11 , 13 , 29 , 31 ,( ) A.52 B.53 C.54 D.55分析:奇偶项分别相差1138,29131682,?312483则可得?55,故此题选D5. -2/5,1/5,-8/750,( )。A 11/375 B 9/375 C 7/375 D 8/375解析: -2/5,1/5,-8/750,11/375=4/(-10),1/5,8/(-750),11/375=分子 4、1、8、11=头尾相减=7、7分母 -10、5、-750、375=分2组(-10,5)、(-750,375)=每组第二项除以第一项=-1/2,-1/2所以答案为A6. 16 , 8 , 8 , 12 , 24 , 60 , ( )A.90 B.120 C.180 D.240分析:相邻两项的商为0.5,1,1.5,2,2.5,3,所以选18010. 2 ,3 ,6 ,9 ,17 ,()A.18 B.23 C.36 D.45分析:6+9=15=353+17=20=45 那么2+?=55=25所以?=2311. 3 ,2 ,5/3 ,3/2 ,()A.7/5 B.5/6 C.3/5 D.3/4 分析:通分3/14/25/36/4-7/513. 20 ,22 ,25 ,30 ,37 ,() A.39 B.45 C.48 D.51 分析:它们相差的值分别为2,3,5,7。都为质数,则下一个质数为11则37+114816. 3 ,10 ,11 ,( ) ,127A.44 B.52 C.66 D.78解析:3=13+210=23+211=32+266=43+2127=53+2其中指数成3、3、2、3、3规律25. 1 ,2/3 , 5/9 ,( 1/2 ) , 7/15 ,4/9 ,4/9 A.1/2 B.3/4 C.2/13 D.3/7解析:1/1 、2/3 、 5/9、1/2 、7/15、4/9、4/9=规律以1/2为对称=在1/2左侧,分子的2倍-1=分母;在1/2时,分子的2倍=分母;在1/2右侧,分子的2倍+1=分母31. 5 ,5 ,14 ,38 ,87 ,( )A.167 B.168 C.169 D.170解析:前三项相加再加一个常数变量(即:N1是常数;N2是变量,a+b+c+N1N2)5+5+14+141=3838+87+14+142=16732.( ) , 36 ,19 ,10 ,5 ,2A.77 B.69 C.54 D.48 解析:5-2=3 10-5=5 19-10=9 36-19=175-3=2 9-5=4 17-9=8所以X-17应该=1616+17=33 为最后的数跟36的差 36+33=69所以答案是 6933. 1 ,2 ,5 ,29 ,()A.34 B.846 C.866 D.37解析:5=22+12 29=52+22 ( )=292+52 所以( )=866,选c34. -2/5 ,1/5 ,-8/750 ,() A.11/375 B.9/375 C.7/375 D.8/375解析:把1/5化成5/25 先把1/5化为5/25,之后不论正负号,从分子看分别是:2,5,8 即:5-2=3,8-5=3,那么?-8=3 ?=11 所以答案是11/37536. 1/3 ,1/6 ,1/2 ,2/3 ,( )解析:1/3+1/6=1/21/6+1/2=2/31/2+2/3=7/641. 3 , 8 , 11 , 9 , 10 , () A.10 B.18 C.16 D.14解析:答案是A 3, 8, 11, 9, 10, 10=3(第一项)1+5=8(第二项)31+8=1131+6=931+7=1031+10=10其中5、8、6、7、7=5+8=6+78+6=7+742. 4 ,3 ,1 ,12 ,9 ,3 ,17 ,5 ,( )A.12 B.13 C.14 D.15解析: 本题初看较难,亦乱,但仔细分析,便不难发现,这是一道三个数字为一组的题,在每组数字中,第一个数字是后两个数字之和,即4=3+1,12=9+3,那么依此规律,( )内的数字就是17-5=12。故本题的正确答案为A。44. 19,4,18,3,16,1,17,( )A.5 B.4 C.3 D.2解析:本题初看较难,亦乱,但仔细分析便可发现,这是一道两个数字为一组的减法规律的题,19-4=15,18-3=15,16-1=15,那么,依此规律,( )内的数为17-2=15。故本题的正确答案为D。45. 1 ,2 ,2 ,4 ,8 ,( )A.280 B.320 C.340 D.360解析:本题初看较难,但仔细分析后便发现,这是一道四个数字为一组的乘法数列题,在每组数字中,前三个数相乘等于第四个数,即252=20,343=36,565=150,依此规律,( )内之数则为858=320。故本题正确答案为B。46. 6 ,14 ,30 ,62 ,( )A.85 B.92 C.126 D.250解析:本题仔细分析后可知,后一个数是前一个数的2倍加2,14=62+2,30=142+2,62=302+2,依此规律,( )内之数为622+2=126。故本题正确答案为C。48. 12,2,2,3,14,2,7,1,18,3,2,3,40,10,( ),4A.4 B.3 C.2 D.1解析:本题初看很乱,数字也多,但仔细分析后便可看出,这道题每组有四个数字,且第一个数字被第二、三个数字连除之后得第四个数字,即1222=3,1427=1,1832=3,依此规律,( )内的数字应是40104=1。故本题的正确答案为D。49. 2 ,3 ,10 ,15 ,26 ,35 ,( )A.40 B.45 C.50 D.55解析:本题是道初看不易找到规律的题,可试着用平方与加减法规律去解答,即2=12+1,3=22-1,10=32+1,15=42-1,26=52+1,35=62-1,依此规律,( )内之数应为72+1=50。故本题的正确答案为C。50. 7 ,9 , -1 , 5 ,(-3)A.3 B.-3 C.2 D.-1解析:7,9,-1,5,(-3)=从第一项起,(第一项 减 第二项) (1/2)=第三项 51. 3 ,7 ,47 ,2207 ,( )A.4414 B 6621 C.8828 D.4870847解析:本题可用前一个数的平方减2得出后一个数,这就是本题的规律。即7=32-2,47=72-2,22072-2=4870847,本题可直接选D,因为A、B、C只是四位数,可排除。而四位数的平方是7位数。故本题的正确答案为D。52. 4 ,11 ,30 ,67 ,( )A.126 B.127 C.128 D.129解析:这道题有点难,初看不知是何种规律,但仔细观之,可分析出来,4=13+3,11=23+3,30=33+3,67=43+3,这是一个自然数列的立方分别加3而得。依此规律,( )内之数应为53+3=128。故本题的正确答案为C。53. 5 , 6 , 6/5 , 1/5 , ()A.6 B.1/6 C.1/30 D.6/25解析:(方法一)头尾相乘=6/5、6/5、6/5=选D (方法二)后项除以前项:6/5=6/5 1/5=(6/5)/6;( )=(1/5)/(6/5);所以( )=1/6,选b54. 22 ,24 ,27 ,32 ,39 ,( )A.40 B.42 C.50 D.52解析:本题初看不知是何规律,可试用减法,后一个数减去前一个数后得出:24-22=2,27-24=3,32-27=5,39-32=7,它们的差就成了一个质数数列,依此规律,( )内之数应为11+39=50。故本题正确答案为C。55. 2/51 ,5/51 ,10/51 ,17/51 ,( )A.15/51 B.16/51 C.26/51 D.37/51解析:本题中分母相同,可只从分子中找规律,即2、5、10、17,这是由自然数列1、2、3、4的平方分别加1而得,( )内的分子为52+1=26。故本题的正确答案为C56. 20/9 ,4/3 ,7/9 ,4/9 ,1/4,( )A.5/36 B.1/6 C.1/9 D.1/144解析:这是一道分数难题,分母与分子均不同。可将分母先通分,最小的分母是36,通分后分子分别是204=80,412=48,74=28,44=16,19=9,然后再从分子80、48、28、16、9中找规律。80=(48-28)4,48=(28-16)4,28=(16-9)4,可见这个规律是第一个分子等于第二个分子与第三个分子之差的4倍,依此规律,( )内分数应是16=(9-?)4,即(36-16)4=5。故本题的正确答案为A。57. 23 ,46 ,48 ,96 ,54 ,108 ,99 ,( )A.200 B.199 C.198 D.197解析:本题的每个双数项都是本组单数项的2倍,依此规律,( )内的数应为992=198。本题不用考虑第2与第3,第4与第5,第6与第7个数之间的关系。故本题的正确答案为C。58. 1.1 ,2.2 ,4.3 ,7.4 ,11.5 ,( )A.155 B.156 C.158 D.166解析:此题初看较乱,又是整数又是小数。遇到此类题时,可将小数与整数分开来看,先看小数部分,依次为0.1,0.2,0.3,0.4,0.5,那么,( )内的小数应为0.6,这是个自然数列。再看整数部分,即后一个整数是前一个数的小数与整数之和,2=1+1,4=2+2,7=4+3,11=7+4,那么,( )内的整数应为11+5=16。故本题的正确答案为D。59. 0.75 ,0.65 ,0.45 ,( )A.0.78 B.0.88 C.0.55 D.0.96解析:在这个小数数列中,前三个数皆能被0.05除尽,依此规律,在四个选项中,只有C能被0.05除尽。故本题的正确答案为C。60. 1.16 ,8.25 ,27.36 ,64.49 ,( )A.65.25 B.125.64 C.125.81 D.125.01解析:此题先看小数部分,16、25、36、49分别是4、5、6、7自然数列的平方,所以( )内的小数应为8.2=64,再看整数部分,1=13,8=23,27=33,64=43,依此规律,( )内的整数就是5.3=125。故本题的正确答案为B。61. 2 ,3 ,2 ,( ) ,6A.4 B.5 C.7 D.8解析:由于第2个2的平方=4,所以,这个数列就成了自然数列2、3、4、( )、6了, 内的数应当就是5了。故本题的正确答案应为B。62. 25 ,16 ,( ) ,4A.2 B.3 C.3 D.6解析:根据 的原理,25=5,16=4,4=2,5、4、( )、2是个自然数列,所以( )内之数为3。故本题的正确答案为C。63. 1/2 ,2/5 ,3/10 ,4/17 ,( )A.4/24 B.4/25 C.5/26 D.7/26解析:该题中,分子是1、2、3、4的自然数列,( )内分数的分子应为5。分母2、5、10、17一下子找不出规律,用后一个数减去前一个数后得5-2=3,10-5=5,17-10=7,这样就成了公差为2的等差数列了,下一个数则为9,( )内的分数的分母应为17+9=26。故本题的正确答案为C。65. -2 ,6 ,-18 ,54 ,( )A.-162 B.-172 C.152 D.164解析:在此题中,相邻两个数相比6(-2)=-3,(-18)6=-3,54(-18)=-3,可见,其公比为-3。据此规律,( )内之数应为54(-3)=-162。故本题的正确答案为A。66. 7 , 9 , -1 , 5 , (-3)A.3 B.-3 C.2 D.-1解析:7,9,-1,5,(-3)=从第一项起,(第一项 减 第二项) (1/2)=第三项67. 5 , 6 , 6/5 , 1/5 , ( )A.6 B.1/6 C.1/30 D.6/25解析:头尾相乘=6/5、6/5、6/5,选D68. 2 ,12 ,36 ,80 ,150 ,( )A.250 B.252 C.253 D.254解析:这是一道难题,也可用幂来解答之2=21的2次方,12=32的2次方,36=43的2次方,80=54的2次方,150=65的2次方,依此规律,( )内之数应为76的2次方=252。故本题的正确答案为B。69. 0 ,6 ,78 ,() ,15620A.240 B.252 C.1020 D.7771解析:0=11-16=222-278=3333-3?=44444-415620=555555-5 答案是1020 选C74. 5 , 10 , 26 , 65 , 145 , ( )A.197 B.226 C.257 D.290分析:22+1=532+1=1052+1=2682+1=65122+1=145172+1=290纵向看2、3、5、8、12、17之间的差分别是1、2、3、4、575 解析:观察可知,繁分数中共有12个分母数字较大的分数,按常规的通分方法显然行不通。若取最大值和最小值来讨论算式的取值范围,也较找出算式的整数部分。因此,S的整数部分是165。76. 65 ,35 ,17 ,3 ,(1) 8平方加一,6平方减一,4平方加一,2平方减一,0平方加一。 77. 23 ,89 ,43 ,2 ,(3) 取前三个数,分别提取个位和百位的相同公约数列在后面。79. 3/7 ,5/8 ,5/9 ,8/11 ,7/11 ,()A.11/14 B.10/13 C.15/17 D.11/12解析:每一项的分母减去分子,之后分别是: 7-3=4 8-5=3 9-5=4 11-8=3 11-7=4从以上推论得知:每一项的分母减去分子后形成一个4和3的循环数列,所以推出下一个循环数必定为3,只有A选项符合要求,故答案为A。80. 1 ,2 ,4 ,6 ,9 ,( ) ,18A.11 B.12 C.13 D.14分析:(1+2+4+6)-22=9 (2+4+6+9)-24=13 (13+6+9+4)-28=18 所以选C85. 1 ,10 ,3 ,5 ,()A.11 B.9 C.12 D.4分析(一):两两相比,1/10,3/5通分,1/10,6/10,下组应该是11/10,故答案A分析(二):要把数字变成汉字,看笔画1、10、3、5、(4) 一、十、三、五、四88. 1 ,2 ,5 ,29 ,()A.34 B.846 C.866 D.37解析:5=22+12 29=52+22 ( )=292+52 所以( )=866,选C89. 1 , 2 , 1 , 6 , 9 , 10 ,( )A13 B12 C19 D17解析:1+2+1=4=2平方2+1+6=3平方1+6+9=4平方6+9+10=5平方9+10+(?)=6平方 答案:1790. 1/2 ,1/6 ,1/12 ,1/30 ,( )A.1/42 B.1/40 C.11/42 D.1/50解析:主要是分母的规律,212,623,1234,3056,?67 所以答案是A91. 13 , 14 , 16 , 21 ,( ) , 76A23 B35 C27解析:按奇偶偶排列,选项中只有22是偶数92. 1 , 2 , 2 ,6 ,3 , 15 , 3 ,21 , 4 ,( )A.46 B.20 C.12 D.44解析:2/1=2 6/2=3 15/3=5 21/3=7 44/4=1193. 3 , 2 , 3 ,7 , 18 , ( )A47 B24 C36 D70解析:第一项和第三项的和为中间项的三倍94. 4 ,5 ,( ) ,40 ,104 A.7 B.9 C.11 D.13解析:5-4=13104-64=43由此推断答案是13,因为:13-5=8,是2的立方;40-13=27,是3的立方,所以答案选D95. 0 ,12 ,24 ,14 ,120 ,16 ,( )A280 B32 C64 D336解析:奇数项 1的立方-1 3的立方-3 5的立方-5 7的立方-796. 3 , 7 , 16 , 107 ,()解析:答案是16107-5第三项等于前两项相乘减598. 1 , 10 , 38 , 102 ,( )A221 B223 C225 D227解析:22-344-677-111111-191616-313 6 11 19 31633 1165 19118 311912532 853 1284100. 0 ,22 ,47 ,120 ,() ,195解析:2 5 7 11 13 的平方,-4 -3 -2 -1 0 -1 答案是169101. 11,30,67,()解析:2的立方加3 ,3的立方加3. 答案是128 102. 102 ,96 ,108 ,84 ,132 ,()解析:依次相差-6、+12、-24、+48、(-96)所以答案是 36 103. 1 ,32 ,81 ,64 ,25 ,() ,1 ,1/8解析:16、25、34、43、52、(61)、71、8-1 。答案是6 104. -2 ,-8 ,0 ,64 ,()解析:13(-2)=-2 23(-1)=-8 330=0 431=64 答案:532=250 105. 2 ,3 ,13 ,175 ,( )解析:( C=B2+2A )13=32+22175=132+23答案: 30651=1752+213 106. 3 , 7 , 16 , 107 ,( )解析:16=37-5107=167-5答案:1707=10716-5 107. 0 ,12 ,24 ,14 ,120 ,16 ,()A280 B32 C64 D336解析:奇数项 1的立方-1 3的立方-3 5的立方-5 7的立方-7108. 16 ,17 ,36 ,111 ,448 ,( )A.639 B.758 C.2245 D.3465解析:161=16 16+1=17,172=34 34+2=36,363=108 108+3=111,1114=444 444+4=448,4485=2240 2240+5=2245110. 5 ,6 ,6 ,9 ,() ,90A.12 B.15 C.18 D.21解析:6=(5-3)(6-3)9=(6-3)(6-3)18=(6-3)(9-3)90=(9-3)(18-3)111. 55,66,78,82 ,()A.98 B.100 C.96 D.102解析:56-5-6=45=5966-6-6=54=6978-7-8=63=7982-8-2=72=8998-9-8=81=99112. 1,13,45,169,()A.443 B.889 C.365 D.701解析:1 4 由13的各位数的和1+3得 9 由45的各位数4+5 16由169的各位数1+6+9 (25)由B选项的889(8+8+9=25)113. 2 ,5 ,20 ,12 ,-8 ,() ,10A.7B.8C.12D.-8解析:本题规律:2+10=12;20+(-8)=12;12;所以5+(7)=12,首尾2项相加之和为12114. 59 , 40 , 48 ,( ) ,37 , 18A.29 B.32 C.44 D.43解析:第一项减第二项等于19 第二项加8等于第三项 依次减19加8下去115. 1 ,2 ,1 ,6 ,9 , 10 ,( )A.13 B.12 C.19 D.17解析:1+2+1=4=2平方2+1+6=3平方1+6+9=4平方6+9+10=5平方9+10+()=6平方答案17116. 1/3 , 5/9 , 2/3 , 13/21 , ()A.6/17 B.17/27 C.29/28 D.19/27 解析:1/3,5/9,2/3,13/21,(17/27)=1/3,5/9,12/18,13/21,(17/27)每项分母与分子差=2、4、6、8、10等差117. 1 ,2 , 1 , 6 ,9 , 10 , ( ) A.13 B.12 C.19 D.17解析:1+2+1=42+1+6=91+6+9=166+9+10=259+10+17=36118. 1 , 2/3 , 5/9 , () , 7/15 , 4/9 , 4/9解析:3/3 , 4/6 , 5/9 , (6/12) , 7/15 , 8/18119. -7 ,0 ,1 ,2 ,9 ,()解析:-7等于-2的立方加1,0等于-1的立方加1,1等于0的立方加1,2等于1的立方加1,9等于2的立方加1,所以最后空填3的立方加1,即28120. 2 ,2 ,8 ,38 ,( )A.76 B.81 C.144 D.182解析: 后项=前项5-再前一项121. 63 ,26 ,7 ,0 ,2 ,9 ,( )解析:63=43-126=33-17=23-10=13-1-2=(-1)3-1-9=(-2)3-1(-3)3-1=-28122. 0 ,1 ,3 ,8 ,21 ,( )解析:13-0=333-1=883-3=21213-8=55123. 0.003 ,0.06 ,0.9 ,12 ,( )解析:0.003=0.00310.06=0.0320.9=0.3312=34于是后面就是305150124. 1 ,7 ,8 ,57 ,( )解析:12+7=872+8=5782+57=121125. 4 ,12 ,8 ,10 ,( )解析:(412)/2=8(128)/2=10(810)/2=9126. 3 ,4 ,6 ,12 ,36 ,( )解析:后面除前面,两两相除得出4/3,3/2,2,3,X,我们发现ABC于是我们得到X236于是366216127. 5 ,25 ,61 ,113 ,( )解析:25-52061-252016113-613616x-113=52+16129. 9 ,1 ,4 ,3 ,40 ,()A.81B.80 C.121D.120解析:除于三的余数是011011 答案是121130. 5 ,5 ,14 ,38 ,87 ,( ) A.167 B. 168 C.169 D. 170解析:5+11155+321414+5213838+728787+921167133. 1 , 5 , 19 , 49 , 109 , ( )A.170 B.180 C.190 D.200解析:19-5+1=15 -=2149-19+(5+1)=36 -=49109-49+(19+5+1)=85 -=70 (70=21+49)?-109+(49+19+5+1)= =155?=155+109-(49+19+5+1)=190134. 4/9 , 1 , 4/3 , ( ) , 12 , 36解析:4/9 36 =16 1 12 =12 =x=6 4/3 x =8 /135. 2 , 7 , 16 , 39 , 94 ,( )A.227 B.237 C.242 D.257解析:第一项+第二项2 =第三项136. -26 , -6 , 2 , 4 , 6 ,( )A.8 B.10 C.12 D.14解析:选D;-3的3次加1,-2的3次加2,-1的3次加3,0的3次加4,1的3次加5,2的3次加6137. 1 , 128 , 243 , 64 ,( )A.121.5 B.1/6 C.5 D.358 1/3解析:1的9次方,2的7次方,3的5次方,6的三次方,后面应该是5的一次方 所以选C138. 5 , 14 ,38 ,87 ,( )A.167
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025重庆风景园林技工学校招聘2人(编制外教官岗位)备考练习题库及答案解析
- 公文写作试题库(含答案)
- 《营业服务规范》专业知识试题与答案
- 职业技能鉴定《电气设备安装工》知识考试题与答案
- 全国2025年质量月全面质量管理知识竞赛题库及答案B卷
- 礼貌礼仪主题课件
- 2025山东鲁诚物业管理有限责任公司招聘2人考试参考试题及答案解析
- 实验室管理制度及基础操作规范考试题(附答案)
- 学校国旗管理办法规范流程
- 数字平台促进学生群体互动-洞察及研究
- 2025年繁轩科技发展有限公司招聘考试笔试试题(含答案)
- 音乐游戏 花巴掌拍拍教学设计-2025-2026学年小学音乐二年级上册人音版(2024 主编:赵季平杜永寿)
- 2025海南省通信网络技术保障中心招聘事业编制人员(第2号)考试备考题库及答案解析
- 肿瘤护理学高级进阶2025年测试答案及解析
- 2025年宣城市总工会招聘社会化工会工作者13名笔试参考题库附答案解析
- 2025-2026学年苏科版(2024)初中物理九年级上册教学计划及进度表
- 2025至2030年中国电热毛巾架行业市场发展现状及投资战略咨询报告
- 2025重庆对外建设(集团)有限公司招聘41人笔试模拟试题及答案解析
- 2025年四川省成都市中考数学真题(含答案卷)
- 2025至2030年中国泥炭行业市场深度分析及投资战略咨询报告
- 工会帮扶救助课件
评论
0/150
提交评论