




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3讲圆锥曲线的综合问题(限时:45分钟)【选题明细表】知识点、方法题号圆与圆锥曲线综合问题1定点、定值问题2,3探索性问题4取值范围问题51.(2018广西柳州市一模)已知椭圆C:+=1(ab0)的离心率为,F1,F2为椭圆的左右焦点,P为椭圆短轴的端点,PF1F2的面积为2.(1)求椭圆C的方程;(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OAOB,试判断直线AB与圆x2+y2=2的位置关系,并证明你的结论.解:(1)由题意,解得a=2,b=c=,所以椭圆C的方程为+=1.(2)直线AB与圆x2+y2=2相切.证明如下:设点A,B的坐标分别为(x0,y0),(t,2),其中x00.因为OAOB,所以=0,即tx0+2y0=0,解得t=-.当x0=t时,y0=-,代入椭圆C的方程,得t=,故直线AB的方程为x=.圆心O到直线AB的距离d=.此时直线AB与圆x2+y2=2相切.当x0t时,直线AB的方程为y-2=(x-t).即(y0-2)x-(x0-t)y+2x0-ty0=0.d=,又+2=4,t=-,故d=.此时直线AB与圆x2+y2=2相切.综上,AB与圆x2+y2=2相切.2.(2018湖北省八市联考)如图,已知抛物线x2=2py(p0),其焦点到准线的距离为2,圆S:x2+y2-py=0,直线l:y=kx+与圆和抛物线自左至右顺次交于四点A,B,C,D.(1)若线段AB,BC,CD的长按此顺序构成一个等差数列,求正数k的值;(2)若直线l1过抛物线的焦点且垂直于直线l,l1与抛物线交于M,N两点,设MN,AD的中点分别为P,Q.求证:直线PQ过定点.(1)解:由题意可得p=2,所以S(0,1),圆S的半径为1.设A(x1,y1),D(x2,y2),由得x2-4kx-4=0,所以x1+x2=4k,所以y1+y2=k(x1+x2)+2=4k2+2,所以|AB|+|CD|=|AS|+|DS|-|BC|=y1+1+y2+1-2=y1+y2=4k2+2,又|AB|+|CD|=2|BC|,即4k2+2=4.又k0,所以k=.(2)证明:由(1)知x1+x2=4k,y1+y2=4k2+2,所以Q(2k,2k2+1).当k=0时,直线l1与抛物线没有两个交点,所以k0,用-替换k可得P(-,+1),所以kPQ=,所以直线PQ的方程为y-(2k2+1)=(x-2k),化简得y=x+3,所以直线PQ过定点(0,3).3.(2018广东省海珠区一模)已知椭圆C:+=1(ab0)的焦距为2,且过点A(2,1).(1)求椭圆C的方程;(2)若不经过点A的直线l:y=kx+m与C交于P,Q两点,且直线AP与直线AQ的斜率之和为0,证明:直线PQ的斜率为定值.(1)解:因为椭圆C的焦距为2,且过点A(2,1),所以+=1,2c=2.因为a2=b2+c2,解得a2=8,b2=2,所以椭圆C的方程为+=1.(2)证明:设点P(x1,y1),Q(x2,y2),则y1=kx1+m,y2=kx2+m,由消去y得(4k2+1)x2+8kmx+4m2-8=0,(*)则x1+x2=-,x1x2=,因为kPA+kAQ=0,即=-,化简得x1y2+x2y1-(x1+x2)-2(y1+y2)+4=0.即2kx1x2+(m-1-2k)(x1+x2)-4m+4=0.代入得-4m+4=0,整理得(2k-1)(m+2k-1)=0,所以k=或m=1-2k.若m=1-2k,可得方程(*)的一个根为2,不合题意,所以直线PQ的斜率为定值,该值为.4.(2018山西八校联考)已知圆C:x2+y2-2x=0,圆P在y轴的右侧且与y轴相切,与圆C外切.(1)求圆心P的轨迹的方程;(2)过点M(2,0),且斜率为k(k0)的直线l与交于A,B两点,点N与点M关于y轴对称,记直线AN,BN的斜率分别为k1,k2,是否存在常数m,使得+-为定值?若存在,求出该常数m与定值;若不存在,请说明理由.解:(1)圆C的方程可化为(x-1)2+y2=1,则圆心C(1,0),半径r=1.设圆心P的坐标为(x,y)(x0),圆P的半径为R,由题意可得所以|PC|=x+1,即=x+1,整理得y2=4x.所以圆心P的轨迹的方程为y2=4x(x0).(2)由已知,直线l的方程为y=k(x-2),不妨设t=,则直线l的方程为y=(x-2),即x=ty+2.联立,得消去x,得y2-4ty-8=0.设A(x1,y1),B(x2,y2),则因为点M(2,0)与点N关于y轴对称,所以N(-2,0),故k1=,所以=t+,同理,得=t+,所以+-=(t+)2+(t+)2-=2t2+8t(+)+16(+)-mt2=2t2+8t+16-mt2=2t2+8t+16-mt2=2t2+4-mt2=(2-m)t2+4,要使该式为定值,则需2-m=0,即m=2,此时定值为4.所以存在常数m=2,使得+-为定值,且定值为4.5.(2018南昌市一模)已知椭圆+=1(ab0),连接椭圆的两个焦点和短轴的两个端点得到的四边形为正方形,正方形的边长为.(1)求椭圆的方程;(2)设C(m,0),过焦点F(c,0)(c0)且斜率为k(k0)的直线l与椭圆交于A,B两点,使得(+),求实数m的取值范围.解:(1)由椭圆的定义及题意得a=,b=c=1,所以椭圆的方程为+y2=1.(2)由(1)得F(1,0),直线l的方程为y=k(x-1),代入+y2=1,得(2k2+1)x2-4k2x+2k2-2=0,设A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内蒙古巴彦淖尔市第五中学2026届九年级数学第一学期期末检测试题含解析
- 2025员工终止合同解除劳动合同协议范文
- 江苏省大丰区万盈镇沈灶初级中学2026届七年级数学第一学期期末质量检测试题含解析
- 江苏省无锡市桃溪中学2026届数学八年级第一学期期末考试模拟试题含解析
- 2026届江苏省苏州实验初级中学七年级数学第一学期期末统考试题含解析
- 江苏省南京市六校2026届八年级数学第一学期期末调研模拟试题含解析
- 企业内训资源池发展趋势预测报告
- 江苏省常熟市第一中学2026届数学八上期末考试模拟试题含解析
- 中国银行梅州市大埔县2025秋招笔试英语阅读选词题专练30题及答案
- 中国银行运城市河津市2025秋招英文面试20问及高分答案
- 中国食物成分表2018年(标准版)第6版
- 疑问句(课件)六年下册英语人教PEP版
- 介绍家乡恩施
- 视力残疾康复服务规范
- 【宜家家居物流运作问题与优化建议探析11000字(论文)】
- HG T 3690-2022 工业用钢骨架聚乙烯塑料复合管
- 财务报表分析方法与技巧
- 医院医保科绩效考核标准
- 《直播营销与运营》PPT商品选择与规划
- 贵阳区域分析
- 机电设备调试协议书
评论
0/150
提交评论