




已阅读5页,还剩29页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2 两角和与差的正弦、余弦函数,第三章 2 两角和与差的三角函数,学习目标 1.掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦公式的过程. 2.会用两角和与差的正弦、余弦公式进行简单的三角函数的求值、化简、计算等. 3.熟悉两角和与差的正弦、余弦公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 两角和的余弦,思考,如何由两角差的余弦公式得到两角和的余弦公式?,答案,答案 用代换cos()cos cos sin sin 中的便可得到.,两角和的余弦公式,梳理,cos cos sin sin ,C(),任意角,记忆口决:“余余正正,符号相反”.,知识点二 两角和与差的正弦,思考1,如何利用两角差的余弦公式和诱导公式得到两角和的正弦公式?,答案,思考2,怎样由两角和的正弦公式得到两角差的正弦公式?,答案,答案 用代换,即可得sin()sin cos cos sin .,两角和与差的正弦公式,梳理,记忆口诀:“正余余正,符号相同”.,sin cos cos sin ,sin cos cos sin ,题型探究,类型一 给角求值,例1 (1) .,答案,解析,(2)化简求值:sin(x27)cos(18x)sin(63x)sin(x18).,解答,解 原式sin(x27)cos(18x)cos(x27)sin(x18) sin(x27)cos(18x)cos(x27)sin(18x) sin(x27)(18x)sin 45 .,(1)解答此类题目一般先要用诱导公式把角化正化小,化切为弦统一函数名称,然后根据角的关系和式子的结构选择公式. (2)解题时应注意观察各角之间的关系,恰当运用拆角、拼角技巧,以达到正负抵消或可以约分的目的,从而使问题得解.,反思与感悟,跟踪训练1 计算:(1)sin 14cos 16sin 76cos 74;,解 原式sin 14cos 16sin(9014)cos(9016) sin 14cos 16cos 14sin 16 sin(1416)sin 30 .,解答,(2)sin(54x)cos(36x)cos(54x)sin(36x).,解 原式sin(54x)(36x)sin 901.,类型二 给值求值,解答,(1)给值(式)求值的策略 当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式. 当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”. (2)给值求角本质上为给值求值问题,解题时应注意对角的范围加以讨论,以免产生增解或漏解.,反思与感悟,解答,cos 2cos()() cos()cos()sin()sin(),cos 2cos()() cos()cos()sin()sin(),类型三 可化为两角和与差的正弦形式,解答,例3 将下列各式写成Asin(x)的形式:,解答,一般地对于asin bcos 形式的代数式,可以提取 ,化为Asin(x)的形式,公式 asin bcos sin()(或asin bcos cos()称为辅助角公式.利用辅助角公式可对代数式进行化简或求值.,反思与感悟,答案,解析,当堂训练,答案,解析,2,3,4,5,1,2,3,4,5,1,答案,解析,2.sin 20cos 10cos 160sin 10等于,解析 sin 20cos 10cos 160sin 10 sin 20cos 10cos 20sin 10 sin 30 .,答案,解析,2,3,4,5,1,cos()cos cos sin sin ,4.设为锐角,若cos( ) ,则sin( ) .,2,3,4,5,1,答案,解析,解答,2,3,4,5,1,规律与方法,1.公式的推导和记忆 (1)理顺公式间的逻辑关系,(2)注意公式的结构特征和符号规律 对于公式C(),C()可记为“同名相乘,符号反”; 对于公式S(),S()可记为“异名相乘,符号同”. (3)符号变化是公式应用中易错的地方,特别是公式C(),C(),S(),且公式sin()sin cos cos sin ,角,的“地位”不同也要特别注意.,(3)注意常值代换:用某些三角函数值代替某些常数,使之代换后能运用 相关公式,其中特别要注意的是“1”的代换,如1sin2cos2,1 sin 90, cos 60, sin 60等,再如: 等均可视为 某个特殊角的三角函数值,从而将常数换为三角函数.,2.应用公式需注意的三点 (
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河南建业房子的施工方案
- 女神节形体活动策划方案
- 天猫运动营销方案设计
- 拆阳台施工方案怎么写
- 农安医疗建筑方案设计服务
- 减垄增地施工方案
- 城市红色建筑调色方案设计
- 榆林聚仙禄宾馆专线项目竣工报告
- 水果甜品店营销方案模板
- 教师资格证考试(高中数学)教育知识与能力专项训练试卷2025
- GB/T 20969.1-2021特殊环境条件高原机械第1部分:高原对内燃动力机械的要求
- GB/T 19868.4-2005基于预生产焊接试验的工艺评定
- GB/T 19633.1-2015最终灭菌医疗器械包装第1部分:材料、无菌屏障系统和包装系统的要求
- GB/T 10125-2021人造气氛腐蚀试验盐雾试验
- 吸附及吸附过程课件
- 羽毛球运动基础知识简介课件
- 设计美学研究课件
- 管道施工安全检查表
- 部编版七年级上册语文《雨的四季》课件(定稿;校级公开课)
- 自动控制原理全套ppt课件(完整版)
- 归园田居优质课一等奖课件
评论
0/150
提交评论