




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
指数函数、对数函数复习课,定义域为(0,+). 值域为R,过点(1,0),减函数,增函数,0a1,a1,y=logax (a0且a1),定义域为R. 值域为(0,+),性质,过点(0,1),减函数,增函数,图象,0a1,a1,y=ax (a0且a1),指数函数、对数函数的性质,图象 解析式 定义域 奇偶性 单调性,复习提纲,练习1 结合指数函数、对数函数图象研究下列问题:,(1)函数y=ax+1-5的 图象恒过定点:,(2)函数y=loga(x+1)-5的 图象恒过定点:-,(3)函数y= (x+1)-5 的图象恒过定点:,注:a0=1, loga1=0, (a0,a1) ;1=1(R).,1.填空,下列题目中a0,a1,R,练习1 结合指数函数、对数函数图象研究下列问题:,2.图中曲线是函数y=ax的图象,已知a取 ,则相应的C1、C2、C3、 C4的a的值依次为,x,y,0,C2,C1,C3,C4,回顾:函数y=2x的图象与 函数y=2-x的图象关 于y轴对称,推广:函数y=f(x)与y=f(-x)的图象关于y轴对称,练习1 结合指数函数、对数函数图象研究下列问题:,3.函数y=-lg(x+1)的图象大致是( ),回顾:函数y=lgx的图象与函数y=-lgx的图象 关于x轴对称,推广:函数y=f(x)与y=-f(x)的图象关于x轴对称,B,练习1 结合指数函数、对数函数图象研究下列问题:,4.函数 的图象大致是( ),A. B. C. D.,回顾:f(x)=log2x是偶函数,图象关于y轴对称,推广:y=f(x)是偶函数,先画当x0时y=f(x)的图象, 在关于y轴对称画出另一部分图象.,D,练习2 有关指数函数、对数函数解析式的问题,5.已知f(x)是偶函数,且x0时, f(x)=10x,则x0时,则f(x)=,6.若f(10x)= x+3,则f(x)=,7.若f(log3x+1)=2x,则f(x)=,10-X,(x0),注:用换元法时一定要考虑定义域,练习3,1.偶次根号下 大于等于0; 2.分母不为0; 3.00没意义; 4.对数的真数 大于0.,8.求下列函数的定义域,9. (1)判断函数 的奇偶性. (2)判断函数 的奇偶性.,练习4 有关指数函数、对数函数奇偶性的问题,10. 设函数f(x)=lg(10x+1) +ax是偶函数, 是奇函数,求a+b的值.,练习5 有关指数函数、对数函数单调性的问题,12.指数函数y=(a2-1)x在(-,+)上是减函 数,则a适合的条件是-,11.已知ab0,则2a,2b, 3a的大小关系是 ( ) A 2a2b3a B 2b2a3a C 2b3a2a D 2a3a2b,B,练习5 有关指数函数、对数函数单调性的问题,A.-3, +) B.3, +) C.(-,-3) D.( -,3),练习5 有关指数函数、对数函数单调性的问题,17.已知y=loga(2-ax)在0,1上为x的减函数, 则a的取值范围是( ),A.(0,1) B.(1,2) C.(0,2) D.(2,+),图象:,小结,注:a0=1, loga1=0, (a0,a1) ;1=1(R).,单调性:变形利用图象,推广:函数y=f(x)与y=f(-x)的图象关于y轴对称,推广:函数y=f(x)与y=-f(x)的图象关于x轴对称,推广:y=f(x)是偶函数,先画当x0时y=f(x)的 图象,在关于y轴对称画出另一部分图象.,解析式:,用换元法时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025昆明市晋宁区妇幼健康服务中心招聘编外工作人员(6人)考前自测高频考点模拟试题及参考答案详解1套
- 多态性与肝癌易感性-洞察与解读
- 2025甘肃酒泉市省属公费师范毕业生专项招聘29人模拟试卷及参考答案详解
- 2025广东广州市中山大学孙逸仙纪念医院耳鼻喉科主委秘书岗位招聘1人考前自测高频考点模拟试题及1套参考答案详解
- 2025年镇江市高等专科学校公开招聘高层次人才10人长期考前自测高频考点模拟试题附答案详解(突破训练)
- 2025广东广州花都城投建设管理有限公司招聘拟录模拟试卷(含答案详解)
- 水污染出生缺陷研究-洞察与解读
- 2025年浙江大学医学院附属第二医院招聘医师助理人员若干人考前自测高频考点模拟试题及答案详解1套
- 降温增湿技术集成-洞察与解读
- 班组安全学堂培训内容课件
- 中国民间传说:田螺姑娘
- 桥式起重机Q2练习测试题附答案
- 高级茶艺师理论知识试题
- 哈里伯顿Sperry定向钻井介绍专题培训课件
- 2021年江苏省徐州市中考生物试卷(附详解)
- JJF 1704-2018 望远镜式测距仪校准规范
- 石油化工设备维护检修规程通用设备12
- 《三角形的面积》教学设计方案
- GB/T 14667.1-1993粉末冶金铁基结构材料第一部分烧结铁、烧结碳钢、烧结铜钢、烧结铜钼钢
- 带状疱疹及带状疱疹后神经痛
- 2022年毕节市农业发展集团有限公司招聘笔试试题及答案解析
评论
0/150
提交评论