



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题训练(一)一元二次方程常见解法的选择策略 类型一缺少一次项或可化为形如(xm)2n(n0)的方程可选择直接开平方法1方程4x210的根是()Ax BxCx2 Dx22解方程:(1)(x1)24; (2)(2x1)23.类型二移项后一边为0,另一边能分解因式的方程可选择因式分解法3解下列方程:(1)2x25x0;(2)5x24x.4解方程:2(x3)25(3x)类型三二次项系数为1,且一次项系数为偶数的方程可选择配方法5解方程:x224x9856.6解方程:(1)2x24x10;(2)3x26x20.类型四无明显特点的方程可选择公式法7解下列方程:(1)x25x20;(2)(x3)(x2)40.详解详析专题训练(一)一元二次方程常见解法的选择策略1解析 B4x210,x2,x.故选B.2解:(1)两边同时开平方,得x12,则x12或x12,解得x11,x23.(2)两边同时开平方,得2x1,解得x1,x2.3解:(1)x(2x5)0,x0或2x50,x10,x2.(2)5x24x0,x(5x4)0,x0或5x40,x10,x2.4解:2(x3)25(3x),2(x3)25(x3)0,(x3)2(x3)50,x30或2(x3)50,x13,x2.5解:原方程可变形为x224x14410000,(x12)21002,两边同时开平方,得x12100,x1112,x288.6解:(1)方程整理,得x22x0.移项,得x22x.配方,得x22x1,即(x1)2.开平方,得x1,解得x11,x21.(2)移项,得3x26x2.二次项系数化为1,得x22x.配方,得x22x1,即(x1)2.开平方,得x1,x11,x21.7解:(1)a1,b5,c2,b24ac258330,x,x1,x2.(2)原方程可化为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专注豪宅租售合同范本
- 上海汽车抵押合同范本
- 荔湾打印机采购合同范本
- 外墙清洗合同及安全协议
- 木模板加工买卖合同范本
- 三人合伙挖机合同协议书
- 招标控制价评审合同范本
- 教堂桌椅采购合同协议书
- 办学与当地政府协议合同
- 超市转让签约协议书模板
- 范里安-微观经济学:现代观点
- 【江苏洋河股份内部控制环境现状、问题及对策12000字(论文)】
- 小学语文课外补充古诗词
- 人教版数学四年级上册教材课后习题参考答案(全)
- 人力资源员工旅游活动方案
- 《大卫科波菲尔》读书分享名著导读PPT
- 日照市东港区禹海红旗海水鱼工厂化循环水养殖与良种繁育示范项目海域使用论证报告书
- 北师大版四年级下册口算题大全(全册完整)
- 夜间专项施工专项方案
- 贵州建筑工程检测收费标准
- 研究性学习(高中研究性学习范例)吸烟对中学生的危害
评论
0/150
提交评论