




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的性质一、 知识梳理1奇偶性(1)定义:如果对于函数f(x)定义域内的任意x都有f(x)=f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(x)=f(x),则称f(x)为偶函数。如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。注意: 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则x也一定是定义域内的一个自变量(即定义域关于原点对称)。(2)利用定义判断函数奇偶性的格式步骤: 首先确定函数的定义域,并判断其定义域是否关于原点对称; 确定f(x)与f(x)的关系; 作出相应结论:若f(x) = f(x) 或 f(x)f(x) = 0,则f(x)是偶函数;若f(x) =f(x) 或 f(x)f(x) = 0,则f(x)是奇函数。(3)简单性质:图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称;设,的定义域分别是,那么在它们的公共定义域上:奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇2单调性(1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2)),那么就说f(x)在区间D上是增函数(减函数);注意: 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 必须是对于区间D内的任意两个自变量x1,x2;当x1x2时,总有f(x1)f(x2)(2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。(3)设复合函数y= fg(x),其中u=g(x) , A是y= fg(x)定义域的某个区间,B是映射g : xu=g(x) 的象集:若u=g(x) 在 A上是增(或减)函数,y= f(u)在B上也是增(或减)函数,则函数y= fg(x)在A上是增函数;若u=g(x)在A上是增(或减)函数,而y= f(u)在B上是减(或增)函数,则函数y= fg(x)在A上是减函数。(4)判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤: 任取x1,x2D,且x10,且f(5)=1,设F(x)= f(x)+,讨论 F (x)的单调性,并证明你的结论。【例题8】设函数f(x)(ab0),求f(x)的单调区间,并证明f(x)在其单调区间上的 单调性。【例题9】求函数的单调区间;【例题10】已知奇函数f(x)的定义域为R,且f(x)在0,+上是增函数,是否存在实数m,使f(cos23)+f(4m2mcos)f(0)对所有0,都成立?若存在,求出符合条件的所有实数m的范围,若不存在,说明理由。要点考向三:函数的周期性【例题11】已知定义在R上的奇函数,满足,且在区间0,2上是增函数,若方程f(x)=m(m0)在区间上有四个不同的根,则 【例题12】已知函数是定义在上的周期函数,周期,函数是奇函数又知在上是一次函数,在上是二次函数,且在时函数取得最小值。证明:;求的解析式;求在上的解析式。要点考向四:函数综合题及创新题【例题13】设函数f(x)(xR)满足f(x)f(x),f(x)f(2x),且当x0,1时,f(x)x3.又函数g(x)|xcos(x)|,则函数h(x)g(x)f(x)在上的零点个数为() A5 B6 C7 D8 【例题14】设aR,若x0时均有(a1)x1(x2ax1)0,则a_.【例题15】已知是定义在区间上的奇函数,且,若时,有。(1)解不等式(2)若对所有恒成立,求实数的取值范围。 3、 课后作业 1、已知对于任意实数,函数满足,若方程有2013个实数解,则这2013个实数解之和为 2、已知的定义域均为,是偶函数,是奇函数,且,则 , 3、设是定义在上的函数,它具有奇偶性,且,则的最小正周期是 4、判断函数的奇偶性:是 函数,是 函数5、设函数对任意的,都有,且当时,(1) 求证:是上的增函数;(2) 若,解不等式 6、(1)写出函数的递减区间;(2)已知函数是上减函数,求实数的取值范围7、已知函数对任意实数均有,其中常数为负数,且在区间上有表达式(1)求和的值;(2)写出在上的表达式,并讨论函数在的单调性;(3)求出在上的最小值与最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社会科学研究方法 课件 第六章 实地研究设计
- 企业员工日常生活礼仪培训课件
- 完形填空-夹叙夹议文(复习讲义)-2026年高考英语一轮复习原卷版
- 听听洞里是什么动物互动游戏
- 大客户销售与管理010大客户市场营销
- 实验操作叙述型的分析与判断(含解析)-2026届高中化学一轮复习讲义
- CN120204406A 抑制或检测外泌体miR3150a5p表达试剂的应用以及鼻咽癌转移治疗药物和预后制剂
- 人工智能通识教程(微课版) 课件 05人工智能技术的突破-大语言模型技术
- 数据的分析-2023学年八年级数学上学期期末复习汇编(北师大版)原卷版
- 老君炉药业产品培训知识课件
- 《宫腔镜手术技术》课件
- 农村互助养老的组织化路径探索
- GB 5009.18-2025食品安全国家标准食品中氟的测定
- 开学第一课-小学高年级-主题班会课件-收心
- 酒店冷库进出管理制度
- 中职对口升学考试语文字音专项练习模拟试题库
- 江南大学实验动物中心大楼项目报告表
- 《孙子兵法》全文及译文
- 《经济法基础》 (第2章) 第二章 会计法律制度
- 防呆培训课件
- BSL实验室生物安全管理体系文件
评论
0/150
提交评论