全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
必修5z第一章 解三角形1. 正弦定理:1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 (其中R是三角形外接圆的半径)2.变形:1) 2)化边为角:; 3)化边为角: 4)化角为边: 5)化角为边: 3. 利用正弦定理可以解决下列两类三角形的问题: 已知两个角及任意边,求其他两边和另一角; 已知两边和其中边的对角,求其他两个角及另一边。 Ab4.ABC中,已知锐角A,边b,则时,B无解;或时,B有一个解;时,B有两个解。注意:由正弦定理求角时,注意解的个数。二.三角形面积1.2. ,其中是三角形内切圆半径.3. , 其中,4. ,R为外接圆半径5.,R为外接圆半径三.余弦定理1.余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的2倍,即 2.变形: 注意整体代入,如:3 利用余弦定理判断三角形形状:设、是的角、的对边,则:若,所以为锐角若若, 所以为钝角,则是钝角三角形4. 利用余弦定理可以解决下列两类三角形的问题:1) 已知三边,求三个角2) 已知两边和它们的夹角,求第三边和其他两个角四三角形中常见的结论1) 三角形三角关系:A+B+C=180;C=180(A+B);2) 三角形三边关系: 两边之和大于第三边:,; 两边之差小于第三边:,;3) 在同一个三角形中大边对大角: 4) 三角形内的诱导公式: 5) 两角和与差的正弦、余弦、正切公式(1)sin()sin cos cos sin .(2)cos()cos cos sin sin .(3)tan().(注意等价变形)6) 二倍角的正弦、余弦、正切公式(1)sin 22sin cos .(2)cos 2cos2sin22cos2112sin2.(3) (4)tan 2. (半角公式)7) 三角形的四心:垂心三角形的三边上的高相交于一点 重心三角形三条中线的相交于一点 外心三角形三边垂直平分线相交
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高校教师专业发展与教育能力提升研究
- 2025年初中三年级地理填空题卷
- 2025年冲泡流程考核真题卷
- 2025年青少年户外活动中心开发可行性研究报告及总结分析
- 2025年数字出版行业数字阅读模式与在线阅读平台研究报告及未来发展趋势
- 2025年老年人智能辅助设备开发可行性研究报告及总结分析
- 2025年中医妇科月经病诊疗模拟试题试卷
- 2025年美妆护肤产品研发项目可行性研究报告及总结分析
- 2025年企业安全生产管理系统协议
- 在建工程合同台账咋审(3篇)
- 铁路标准化规范化建设
- 2025年北京市东城区九年级初三一模英语试卷(含答案)
- 超星尔雅学习通《考古与人类(复旦大学)》2025章节测试答案
- 清雪施工方案
- 【上海金融与发展实验室】2025银行业科技金融创新与发展报告
- 2025年江苏省职业院校技能大赛中职组(大数据应用与服务)考试题库(含答案)
- 汽车租赁合同模板
- 医药行业研发项目激励机制管理制度
- 冷库管理规章制度和管理制度
- 第04辑一轮阅读 专题10 阅读理解说明文选标题专练15篇(满分攻略+高考真题+名校模拟)-2025届新高三英语提分培优通关练(高考真题+名校模拟)教师版
- 1、安全管理领导机构和安全管理专职机构制度
评论
0/150
提交评论