[信息与通信]第6章门电路.ppt_第1页
[信息与通信]第6章门电路.ppt_第2页
[信息与通信]第6章门电路.ppt_第3页
[信息与通信]第6章门电路.ppt_第4页
[信息与通信]第6章门电路.ppt_第5页
已阅读5页,还剩94页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第6章 门 电 路 门电路是实现逻辑的电路,常由二极管、三极管或场效应管组成。逻辑门是所有数字电路的基础,本章介绍CMOS与TTL逻辑门电路的基本工作原理与技术参数。,6.1 数字逻辑信号 1数字逻辑值“0”和“1”与数字逻辑信号电平之间的关系 数字逻辑信号是具有“低电平”和“高电平”的电压值,要想用数字电路来操作数字逻辑值“0”和“1”,就必须使数字逻辑值“0”和“1”与数字逻辑信号“低电平”和“高电平”之间有对应关系。 按照正逻辑约定,逻辑“0”用低电平信号表示;逻辑“1”用高电平信号表示。 按照负逻辑约定,“0”用高电平信号表示;“1”用低电平信号表示,这种逻辑约定不太符合人们的习惯思维方式。,2数字逻辑信号电平 数字逻辑信号电平分为高电平和低电平,输出的高电平表示逻辑1 输出的高电平表示逻辑0 输出的低电平表示逻辑0 输出的低电平表示逻辑1,需要注意的是逻辑高电平和低电平都是一个范围,VLmax,VHmin,6.2 CMOS门电路 6.2.1 MOS晶体管 金属-氧化物-半导体场效应晶体管(Metal-Oxide-Semiconductor-Field-Effect-Transistor,简称MOS管)是外加电压控制导电沟道宽窄的器件,依据参与导电的载流子分类,若空穴参与导电称为PMOS管,若是电子参与导电称为NMOS管。 由于导电沟道的宽窄与导电沟道呈现的电阻成比例,所以MOS管可以模型化为输入电压控制的可变电阻,其输入电压可以控制电阻阻值的大小。,确定的输入电压可以使电阻的阻值很大,使MOS管夹断(off);或是使电阻的阻值很小,使MOS管导通(on)。 若MOS管在无控制电压时,不具有导电沟道,加控制电压形成导电沟道,则称为增强型MOS管;若MOS管在无控制电压时,具有导电沟道,加控制电压使导电沟道变窄,则为耗尽型MOS管。,控制栅极和源极之间的电压Vgs,就可以控制漏极和源极之间的电阻Rds,当Vgs=0时,就是栅极电压与源极电压相等时,Rds电阻很大,至少有106 ;当Vgs增加到足够大,就是栅极电压减去源极电压的数值很大时,Rds电阻可以很小 。,PMOS管的栅极与源极之间的电压Vgs也可以控制漏极和源极之间的电阻Rds。 当Vgs=0时,就是栅极电压与源极电压相等时,Rds电阻很大,至少有106 ;当Vgs减小到足够大的负值,就是栅极电压减去源极电压的数值是负值,Rds电阻可以很小。简化符号中栅极上的小圈表示栅极电压低于源极电压时,PMOS管导通。,6.2.2 基本CMOS非门 当VIN是0 V时,NMOS管Q1的Vgs=0 V,所以截止;而PMOS管Q2由于Vgs=-5 V,所以导通。导通后的Q2管呈现小的电阻值,使输出端VOUT=VDD=5 V。 当VIN是5 V时,NMOS管Q1的Vgs=5 V,所以导通;而PMOS管Q2由于Vgs=0 V,所以截止。导通后的Q1管呈现小的电阻值,使输出端与地之间相连,VOUT=0 V。,NMOS管,PMOS管,具有动作电平表示的MOS管非门电路, PMOS和NMOS管的符号除了在PMOS管的栅极加一个小圈以外是完全相同的。如果小圈代表该管在输入电压为低电平L时漏极和源极之间导通,而没有小圈代表在输入电压为高电平H时漏极和源极导通,则可以知道:在VIN=L时,Q2导通,Q1截止,VOUT=H;在VIN=H时,Q1导通,Q2截止,VOUT=L。,6.2.3 CMOS与非门和或非门 1CMOS与非门,2CMOS或非门,6.3 74HC系列门电路的电特性 6.3.1 74HC系列门电路的极限电参数 当芯片使用条件超出极限电参数时,就会使芯片特性变差,甚至造成永久的损坏。,输入电压VI的最高极限值与VCC有关,当VCC降低时,输入电压也必须降低, 直流输出电压VO也是有极限值的,外加到输出引脚的电压值不能超VCC+0.5 V。 输入保护二极管电流IIK值不能超出 20 mA, 输出端的保护二极管电流IOK也不能超出 20 mA, 输出电流IO也不能超出极限值,6.3.2 74HC系列门电路的推荐工作条件 推荐工作条件是芯片制造厂向芯片用户提供的芯片正常工作条件。 只要保证芯片在推荐工作条件下工作,芯片就能够实现正确的逻辑功能。从推荐工作条件可以看出,74HC系列芯片正常工作的电源电压范围是26 V。,6.3.3 74HC系列门电路的静态电特性 1静态电特性 静态电特性有时又称为直流特性,静态电特性给出芯片的输入电平、输入电流、输出电平以及负载特性等参数。,74HC04静态电特性静态电特性,(1)对于输入端,有两个逻辑电平参数 VIHmin:输入高电平时的最小电压值, VILmax:输入低电平时的最大电压值, (2)对于输出端,也有两个逻辑电平参数 VOLmax:低电平输出时的最大输出电压。 VOHmin:高电平输出时的最小输出电压。,电源电压VCC与地线像两根轨道,通常称为电源轨道。 VIHmin=70%VCC VILmax=30%VCC VOHmin=VCC - 0.1 V VOLmax=地线电平+0.1 V 由于在最坏情况下电源电压VCC降落10%,为4.5 V,所以VOHmin最小为4.4 V。5 V电源电压时74HC04的输出、输入高低电平如图所示。,(3)输入高电平电流IIH与输入低电平电流IIL IIH为输入在高电平状态(简称高态)时流入输入端的电流。 IIL为输入在低电平状态(简称低态)时流入输入端的电流。 (4)静态电源电流ICC 静态电源电流ICC是在输入信号接地或是接电源时的电源电流。在温度为25时,74HC04的静态电源电流ICC为1 uA。,2传输特性 (1)输入-输出电压传输特性 电压传输特性是逻辑门的输入电压与输出电压之间的关系曲线。,(2)输入电压-MOS管电流特性 是输入电压与流过非门中两MOS管电流特性曲线。,(3)不满足输入高低电平参数时的CMOS门特性 当非门的输入电压满足高电平或低电平电压参数时,MOS管中总有一个是在夹断状态,使流过两MOS管的电流近乎为0。若是输入电压不是很接近电源轨道,则导通的MOS管不能充分导通,截止的MOS管不能充分截止,使CMOS非门输出电压远离电源轨道。,当输入电压为1.5 V时,可以计算出流过两个MOS管的电流为1.72 mA,输出电压为4.31 V。由于流过两个MOS管的电流太大,不仅增大了功耗,也降低了拉电流负载能力。 当输入电压为3.5 V时,可以计算出输出电压为0.24 V。这时流过两个MOS管的电流为1.19 mA。由于流过两个MOS管的电流太大,因此降低了灌电流能力,并增加了功耗。,3噪声容限 噪声容限就是对噪声的容忍程度,或者说是可以在前级输出信号上可以叠加的噪声电压幅度是多少。噪声容限定义为: 最小高电平噪声容限VNH = VOHmin - VIHmin 最小低电平噪声容限VNL= VILmax- VOLmax,74HC04连接同类电路的噪声容限等于(电源电压取最坏情况4.5 V,环境温度25): VNH = VOHmin - VIHmin =4.4 V - 3.15 V = 1.25 V VNL= VILmax - VOLmax =1.35 V - 0.1 V=1.25 V,4输出特性 (1)电阻性负载 CMOS门与电阻性负载相连的等效电路如图3-16所示,其中图3-16(a)是灌电流负载情况,图3-16(b)是拉电流负载情况。,图3-16 灌电流和 拉电流负载,IOLmax:保证输出电压小于VOLmax的最大灌入电流。若是电流大于IOLmax,则输出低电平电压可能大于VOLmax,主要是灌入电流在电阻Rn上压降的影响。 IOHmax:保证输出电压大于VOHmin的最大拉出电流。若是电流大于IOHmax,则输出高电平电压可能小于VOHmin,主要是拉出电流在电阻Rp上压降的影响。,图3-16 灌电流和 拉电流负载,(2)输出电压与电流之间的关系 实际上由于MOS管导通电阻的影响,CMOS门输出的电压随电流的变化而变化,输出电压随电流的变化曲线为输出特性曲线。 74HC04非门的典型输出特性曲线如图3-17所示。 。,图3-17(a)是低电平输出特性,(b)是高电平输出特性,(3)CMOS门驱动逻辑门电路 74HC04在4.5 V电源时驱动这两种负载的情况如表3-7所示。表中给出了保证输出电压的条件下的最大输出电流值。,(4)扇出:门电路能够带动同类门输入端的数量称为扇出。扇出不仅和门的输出特性有关,而且依赖于门的输入特性。 当负载门的输入端数超出了前级门的扇出能力,则有如下影响: 在低电平,前级门输出电压VOL可能增加并超过VOLmax。 在高电平,前级门输出电压VOH可能减小并低于VOHmin。 传播延迟时间可能增加。 输出上升时间和下降时间增加。 器件的工作温度上升,减小器件的可靠性并渐渐损坏器件。,6.3.4 74HC系列门电路的动态特性 74HC04的数据说明书中给出了该芯片的动态特性如表3-8所示。,描述CMOS器件动态特性的参数是: 输出瞬变时间和传播延迟时间。,1输出瞬变时间 门电路的输出从一个状态转换成另外一个状态所需的时间称为输出瞬变时间。理想的转换不需要时间。 如图3-18(a)所示。但是实际上,转换需要时间,这是因为需要向导线和元件等电路形成的等效电容充电。 图3-18(b)是转换曲线,其中从低态向高态转换需要上升时间tr,而从高态向低态转换需要下降时间tf。 图3-18(c)所示的是实际瞬态上升和下降时间,2传输延迟时间 在信号通道上,从输入信号的变化到输出信号的变化所需的时间称为传输延迟tp。对于多输入输出器件可能有多个传输延迟时间。,tPHL为当输出从高电平向低电平变化时,从门电路的输入变化到引起门电路的输出变化所需要的时间。 tPLH为当输出从低电平向高电平变化时,从门电路输入变化到引起门电路输出变化所需要的时间。,3功率耗散 如果CMOS器件的输出不发生变化,则这时的功耗为静态功耗。CMOS器件的静态功耗很小。 动态功耗的一个原因就是当输入信号变化时,总有一段时间CMOS器件输入电压既不是高态,也不是低态,因而MOS管似通非通,引起电源与地线之间的等效电阻减小形成的内部功耗。内部功耗与VCC的大小以及输出状态的变化率有关,输出状态变化引起的内部功耗PT可以由下式决定:,电容CPD由下式计算,PT1=CPD(VCC)2f1=ICC1VCC PT2=CPD(VCC)2f2=ICC2VCC,动态功耗的另一个原因是由负载电容引起的。,全部动态功耗等于,6.4 其他类型的CMOS电路 1传输门,传输门由控制端EN_L和EN控制,EN_L和EN是互补信号。当EN_L=L、EN=H时,传输门导通,A、B两端之间呈现很小的电阻(几欧到几十欧之间),相当于导通;当EN_L=H、EN=L时,传输门不导通,A、B两端之间呈现很大的电阻。,图3-21是基于CMOS传输门组成的四双向模拟开关74AHC4066。 在数据采集系统中,常用模拟开关切换模拟信号,实现多通道数据采集。在CMOS技术中,常使用传输门组成更复杂的数字电路,例如图3-22所示的2选1电路,就使用传输门组成。可以看出,当控制端S为低电平时,X与Z相连;当控制端S为高电平时,Y与Z相连。,图3-22 用传输门组成的2选1选择器,*2三态门P51 普通的逻辑门只输出“0”或“1”两种状态。而三态门输出有称为高阻状态(High impedance,Hi-Z或floating)的第三种非逻辑状态。在这种状态下,若是忽略流入或流出门电路的极小泄漏电流,门电路的输出就像与其他电路没有连接。这样的输出具有三种输出状态,逻辑“0”、逻辑“1”和高阻状态“Z”。,表3-10 三态CMOS缓冲器的动作表,图3-24是三态输出的8总线缓冲/驱动器74HC244。 该芯片内部电路分为两组,每组有4个三态门,并有单独的低电平有效使能信号。,*3开漏输出门 (1)开漏门工作原理,开漏输出需要外接上拉电阻将开漏输出无源上拉到高电平才能正常工作。图3-26就是具有无源上拉电阻推动负载的开漏与非门电路。,(2)开漏输出驱动发光二极管 开漏输出驱动发光二极管的电路如图3-27所示。,发光二极管的工作电流取10 mA就有相当的亮度 发光二极管串联的限流电阻的计算:若取发光二极管的工作电流ILED为10 mA,发光二极管的正向压降VLED为1.8 V,电源电压为12 V。根据图3-27所示的电路有 VOL+4VLED+(ILEDR) =VCC,(3)线与逻辑 将几个具有开漏输出与门的输出端连接在一起,就形成线与逻辑,如果所有与门的输出都开路,则输出为高电平;如果有一个输出低电平,则输出低电平。,注意:两个具有有源上拉门的输出端是不能直接连在一起实现线与的,如图3-29所示。电流大损坏,图3-28 三个开漏门组成的线与逻辑,图3-29 两个有源上拉与非门的输出端连在一起,6.5 常用CMOS门电路系列 1CMOS 4000系列 第一个商业上成功的CMOS系列是4000系列(包括4500系列),虽然4000系列的功耗低,但是具有速度慢和与TTL(有关TTL系列的内容在后面介绍)系列不容易接口的缺点。 4000系列具有以下优点: 电源电压范围宽(318 V); 功耗低; 高噪声容限。 但是也有如下缺点: 传输延迟时间长(在100 ns左右); 输出驱动能力小,只能达到1个74LS门的驱动能力,这里一个74LS门的驱动能力是0.4 mA; 容易出现芯片自锁; 对静电敏感,易受静电损坏。,274系列中的CMOS芯片 74系列器件的命名格式是74FAMnn,这里FAM表示器件所属的系列,而数字nn表示器件的功能。只要nn相同,就说明这些器件的功能相同。例如74HC30、74HCT30、74AC30、74ACT31、74AHC30都是8输入端与非门。 (1)HC和HCT系列 早期74系列中的CMOS芯片是HC(High speed CMOS)和HCT(High speed CMOS,TTL compatible),与4000系列比较,它们具有更高的灌电流、拉电流能力和速度,而且HCT系列使用5 V电源,与使用5 V电源的TTL器件完全兼容,可以混合使用。 74HC系列主要用于都是74HC系列的系统设计,它的电源电压范围为26 V,电源电压越高允许使用的速度越高,而低的电源电压可以减小功耗。,274系列中的CMOS芯片,图3-32 74HC和74HCT系列的输入输出电平,(2)VHC和VHCT系列 20世纪80年代,又开发出了VHC(Very High Speed CMOS)和VHCT(Very High Speed CMOS,TTL compatible)系列的CMOS芯片。这两个系列的速度是HC和HCT系列的两倍。像HC和HCT系列一样,VHC和VHCT的区别是它们能够辨认的输入电平不同,而输出特性是完全相同的。该系列具有肖特基TTL逻辑电路的速度以及CMOS电路的功耗,以及灌电流和拉电流能力相同的特点。 (3)AHC、AHCT系列 以上叙述的VHC和VHCT系列器件由Mototola、Fairchild和Toshiba公司制作,而AHC和AHCT系列是Texas Instruments和Philips公司生产的兼容产品。其技术指标与VHC和VHCT系列器件基本相同。 (4)AC、ACT系列 该系列除具有以上各系列的优点外,还具有24 mA的灌电流和拉电流负载能力。,3CMOS各系列芯片的电特性 (1)电源电压范围 不同CMOS系列芯片的工作电源电压如表3-12所示。,(2)输入特性 CMOS各系列芯片的输入特性如表3-13所示。,(3)输出特性 CMOS各系列芯片的输出特性如表3-14所示。,5)功耗电容 CMOS各系列中四2输入与非门的典型功耗电容如表3-16所示。,(4)传输延迟 CMOS各系列中四2输入与非门的传输延迟时间如表3-15所示,6.6 低电压CMOS器件 有两个原因使CMOS器件的电压越来越小: 由CMOS器件功耗的计算公式CV2f可知,只有减小电源电压,才能减小功耗。 因为MOS管的体积越来越小,绝缘层越来越薄,绝缘强度不能忍受5 V电压。 所以IC工业标准委员会(JEDEC),选择了3.3、2.5和1.8三个电源电压标准,同时还给出了在这些电压下的输入和输出逻辑电平。 1低压器件中的新电路结构 在低压器件中,使用了一些新的电路结构:,(1)忍受5 V电压的输入端,图3-33 HC、HCT与VHC、VHCT,图3-33(a)所示的HC、HCT系列输入电路,在高于VCC+0.5 V的输入信号到达输入端后,电路中的二极管将导通,产生比较大的正向电流。 而图3-33(b)所示的VHC、VHCT系列输入电路,由于没有钳位二极管D2,所以就不会在输入信号过高时出现经过二极管流入电源的电流。,(2)忍受5 V电压的输出端,图3-34(a)所示的是一般的CMOS器件输出电路 图3-34(b)所示的是能够忍受5 V电压的输出结构。,2常用低压CMOS系列 (1)LVC系列 LVC(Low_Voltage_CMOS Logic)是低压CMOS系列产品,该系列主要用于3.3 V、2.5 V和1.8 V电源电压的逻辑系统。该系列具有对称负载能力、总线保持,I/O引脚能够忍受5 V电压,支持部分电源断电和可选串联阻尼电阻等功能。 (2)LV与LV-A系列 LV(Low_Voltage_CMOS Logic)系列可用于3.3 V或5 V逻辑系统设计中,而LV-A是改进产品,主要用于3.3 V、2.5 V和2.5 V电源电压的逻辑系统。该系列具有忍受5 V的I/O引脚、对称驱动能力,并支持部分电路断电。 (3)ALVC系列 ALVC(Advanced Low_Voltage_CMOS Logic)是先进低电压CMOS逻辑,主要用于电源电压为3.3 V、2.5 V和1.8 V的逻辑系统。该系列具有总线保持功能和灌电流拉电流负载能力相同的特点。 (4)LVT系列 LVT(Low_Voltage Technology),该系列主要用于3.3V系统设计,极限灌电流负载64 mA、拉电流负载32 mA,传输延迟最快达到4 ns,而且输入端兼容TTL逻辑电平,并能忍受5.5 V的输入信号。,6.7 分立元件门电路 3.7.1 二极管与二极管逻辑门 1,二极管的开关特性P60,正偏导通,反偏截止,二极管伏安特性的几种近似方法,a)折线二极管模型 b)恒压源模型(开关等效电路) c)理想二极管模型,2用二极管实现简单门电路 (1)二极管或门 二极管或门如图3-38所示。,(2)二极管与门 二极管与门如图3-39所示。,图中A、B是输入信号,Y是输出信号。基于二极管的钳位作用,A或B信号中任何一个信号为高电平5 V时,输出Y为高电平4.3 V;若是A或B都是低电平0 V,输出Y为低电平0 V。,图中A、B是输入信号,Y是输出信号。基于二极管的钳位作用,A和B信号同为高电平5 V时,输出Y为高电平5 V;若是A或B信号中有一个为低电平0 V,输出Y为低电平0.7 V。,三极管的开关特性P61,1)NPN 、PNP型三极管,PNP,6.7.2 双极性三极管,2)三极管的输入特性和输出特性,(1)输入特性,锗管0.2V, 硅管0.7V,(2)输出特性,三极管输出特性上的三个工作区,iC = f (vCE, iB ),放大区:iC=iB 饱和区:Vces=0.10.3V 截止区:IcEo1A,3) 三极管的基本开关电路P62,(1) vI=0: (截止) IB=0, IC=0, VOH=VCC (2) vI VON: (放大区) IB=(vI - VON )/R1 vO=VCC - IC R2= VCC - IB R2 Av= - vO / vI,(3) vI 再增加,(进入饱和区) IB ICmax = VCC / R2 则VO = VCES =0.10.3V,6.7.3 三极管非门 三极管非门(反相器)如图3-42(a)所示。 VOUT与VIN之间的传输特性如图3-42(b)所示。,若是VIN足够高,超过逻辑高电平(2 V),则三极管饱和,VOUT电压小于逻辑低电平(0.4 V); 若是VIN足够低,低于逻辑低电平(0.4 V),则三极管截止,VOUT电压大于逻辑高电平(2.4 V)。因此三极管非门具有逻辑非功能。,图3-42 晶体管非门电路及其传输特性,由于二极管与门和或门具有级联时逐级提高输出低电平、降低高电平的缺点,因此实际中,常用二极管与门后接三极管非门组成与非门,二极管或门后接三极管非门组成或非门,由于非门的输出低电平在0.4 V以下,高电平接近VCC,因此即使多级互连,也不会改变低电平或是高电平值。 由二极管门电路与三极管非门组成的数字电路又称为DTL电路。,6.8 标准TTL门电路 1标准TTL非门7404 (1)非门7404的工作原理 图中Q1是输入耦合三极管、D1是输入钳位二极管、Q2是裂相三极管、三极管Q3和Q4组成的输出形式称为图腾柱(totem-pole)输出或是推挽(push-pull)输出。,输入级Q1、R1 倒相级Q2 输出级Q3、Q4 D1保护二极管,输入端是高电平的情况如图3-44(a)所示,若输入端电平高于2 V,使Q1的基极电位足够高,使Q2导通和Q3导通,并将Q1基极电位钳位2.1 V;而Q2的导通,一方面使Q4截止;另一方面使Q3导通,从而使输出端与地线之间形成低阻通道,输出端呈现低电平(典型值为0.2 V)。,输入端是低电平的情况如图3-44(b)所示,若输入端电平低于0.8 V,Q1的基极电位只有1.5 V,使Q2与Q3的发射结不导通,由于不能形成IC1电流,因此使Q1处于深饱和状态;Q2处于截止状态,一方面使Q3截止,另一方面使Q4导通,输出端与电源VCC之间形成低阻通道,输出端呈现高电平(典型值为3.4 V)。,(2)非门7404传输特性 非门7404的传输特性如图3-45所示。,AB段:这时输入电压低于0.6V,所以Q1基极电位低于1.4 V,Q2与Q3截止,而Q4导通,若是假设Q4基极电流很小,可以忽略电阻R2上的压降,则输出高电平VOH约为VCC - VD2 - VBE43.6 V。 BC段:这段的输入电压范围为0.71.3 V,这时Q2工作在放大区,随着输入电压的增加,Q4的集-射极之间的压降增加,Q3集-射极之间的压降减少,输出电压VOUT线性减少。 CD段:输入电压在1.31.5 V之间,Q1基极电位逼近2.1 V,使Q2和Q3快速饱和导通,Q4截止,输出低电平VOL0.2 V。通常CD段中点对应的输入电压称为阈值电压VTH,由图可知,7404的VTH约为1.4 V。 DE段:输出VOUT保持低电平。,2TTL与非门7400 2输入TTL与非门7400电路结构如图3-46所示,电路结构与TTL非门基本相同,只是输入管Q1改成了多发射极三极管。,*3集电极开路门 集电极开路门(OC门)电路,就像漏极开路门一样,是常用的一类门电路,图3-47就是标准的TTL集电极开路门电路及其符号。,集电极开路门可以实现线与逻辑,其电阻的计算原则是:,4或非门 典型的两输入端或非门电路如图3-48所示。,*5三态门 TTL三态非门及其符号如图3-49所示,,6.9 74LS系列门电路 6.9.1 74LS系列门电路基本工作原理 1肖特基三极管 当一个工作在饱和状态的三极管输入发生变化使其进入截止状态时,需要延迟一段时间才能进入截止状态,原因是在饱和状态下三极管PN结中存储的载流子消散需要时间,这个延迟时间称为存储时间。 肖特基三极管是在三极管的基极和集电极之间并联一个肖特基二极管,如图3-50(a)所示。,肖特基二极管是利用金属和半导体接触形成势垒的二极管 当正向偏置时,肖特基二极管的压降为0.25 V左右。 图3-51(a)所示的是一般的三极管在饱和时的各个极间的电位差,它的基极与集电极之间的电位差为0.4 V; 而图3-51(b)所示的肖特基二极管钳位的三极管基极与集电极之间的电位差是0.25 V。,274LS系列门电路 以74LS00为例介绍常用的74LS低功耗肖特基系列(或LS-TTL)门电路。 四2输入与非门74LS00芯片中一个门的电路如图3-52所示。,该电路由二极管与门和输入保护电路、裂相电路、输出电路、有源泄放电路四部分组成。,(1)二极管与门保护电路 二极管D1A、D1B和电阻R1组成二极管与门。 (2)裂相电路 三极管Q2和有关的电阻用于产生两个互补相位(裂相)的电压以控制输出级工作。,(3)输出极 输出级采用推挽(Push-pull)输出结构, (4)有源泄放电路 有源泄放电路由三极管Q6组成,作用是使Q5管从饱和状态快速进入截止状态。,a)输入端有一个或两个信号是低电平情况。 由于输入端中有一个或两个信号是低电平(0.8 V),则V2B点的电位等于输入低电平的最大值0.8 V加肖特基二极管的正向压降0.25 V,等于1.05 V。由于V2B电位低,所以Q2截止,使Q5、Q6截止,并使Q3和Q4导通,使电源与输出端之间形成低阻通道,输出端输出高电平。,b)输入端两个信号都是高电平情况。 两个输入端都是高电平,使Q2和Q5导通,而Q2、Q5的导通使V2B电位为两个PN结压降。由于Q2导通,使Q3基极电位太低,使Q3和Q4处于截止状态。Q5导通,使地线和输出端之间呈现低阻通道,输出端输出低电平;而Q2导通,使Q6导通,为Q5从饱和状态向截止状态转换做好准备。,在输出端Y从低电平转换为高电平时,当Q2由导通转为截止瞬间,Q6仍然处于导通状态,使Q5的基极与地线之间有低阻通道,Q5基极电位瞬时为低,使Q5快速由导通转为截止。 在输出端Y从高电平转换为低电平时,肖特基势垒二极管D3用于消散Q4的基极存储电荷,D4用于消散负载电容存储的电荷。,该电路采用肖特基势垒二极管构成与非门,目的也是消除多发射极三极管的电荷存储效应。,c)输出高电平电压的估算。 在0.4 mA负载时,若忽略R2电阻上的电压降,则输出高电平应该等于电源电压5V减去两个发射结压降,为3.8 V左右;但是考虑电源电压为最低(4.5 V),同时还有0.4 mA拉电流负载的情况,则输出电压会比3.8 V低很多,但是无论如何比2.7 V高。所以LS-TTL数据说明书给出的最小输出高电平电压是2.7 V。,d)输出低电平电压的估算。 由于Q5管脱离了深饱和状态,导致了输出低电平电压的升高,最大值可达0.5 V。,3传输特性 74LS00的典型传输特性如图3-53所示。,图3-53 74LS00的电压传输特性,6.9.2 74LS系列门电路电特性 174LS00与非门电路的电特性 (1)主要极限值 电源电压VCC与输入电压VI的最高极限值为7 V,实际使用中应该注意不要超出极限值7 V。,(2)推荐工作条件,(3)静态电特性,(4)开关特性,274LS系列的逻辑电平和噪声容限,374LS系列门的扇出 扇出是连接到一个门输出端的同类门输入端个数。 74LS系列门的输入电流IILmax= -0.4 mA, 74LS系列门的输入电流IIHmax=20 uA, IOLmax是保证输出电压小于VOLmax,该电流值为8 mA。 IOHmax是保证输出电压大于VOHmin,该电流值为-0.4 mA。 由前述参数,可以计算出低电平扇出等于8 mA/0.4 mA=20,高电平扇出等于0.4 mA/ 20 uA=20。,474LS系列门的输出特性曲线 (1)输入特性曲线,当V1小于1 V时,Q2与Q5都截止,D1导通,电流 ,若 RS=0,则电流为最大值 ,该电流又称为输入短路电流。随着RS的增加,IRS不断减小。 当V1大于1.2 V时,Q2与Q5发射结都导通,D1不导通,电流IRS为二极管D1的反向饱和电流,因此很小。 当V1从1 V向1.2 V变化时,Q2与Q5发射结从截止向导通变化,D1从导通向截止变化,所以电流IRS从大向小变化,且变化快。,(2)拉电流负载曲线 图3-57所示的是74LS00门输出高电平VOH与输出电流IOH之间的关系曲线。,(3)灌电流负载曲线 图3-58所示的是74LS00门的灌电流负载曲线,图3-57 74LS00门的拉电流负载曲线 图3-58 74LS00门的灌电流负载曲线,574LS系列芯片的静态功率损耗 输出高电平与输出低电平时的门电路电源电流是不同的,如图3-59所示的是静态电源电流测量连接图。,若是假设占空比为50%,则平均电源电流为:,静态平均功耗为,3.10 常用74TTL系列门电路,6.10 常用74TTL系列门电路,标准TTL高态单位负载(U.L. Unit Load)为40 uA;标准TTL低态单位负载为1.6 mA。 所有TTL电路的输入输出负载能力,都可以折算成标准单位负载。例如,74LS00的高电平输入电流为20 uA,则称为20 uA/40 uA=0.5 U.L.;而低电平输入电流为0.4 mA,则称为0.4 mA/1.6 mA=0.25 U.L.。 又例如,74LS00的高电平输出电流为400 uA,则称为400 uA/40 uA=10 U.L.;而低电平输出电流为8 mA,则称为8 mA/1.6 mA=5 U.L.。,6.11 在数字电路设计中使用不同系列的芯片 1常用数字电路的逻辑电平,2各电压系列连接表,3硬件互连中考虑的问题 (1)噪声容限 各系列之间互连的原则是保证噪声容限不是负值,就是: VNL=VILmax - VOLmax0和VNH=VOHmin - VIHmin0。 (2)驱动问题 驱动逻辑门时,应该保证最大驱动电流情况下的输出逻辑电平,否则就不能保证噪声容限为正值。 (3)能忍受驱动侧输出电压的输入端 当驱动侧的电源电压高于被驱动侧的电源电压,则应该注意被驱动侧的输入端是否能够忍受驱动侧的高电平。,4使用电平移动芯片互连不同逻辑电平芯片 当驱动侧与被驱动侧的逻辑电平不兼容时,可以使用具有开漏(OD)输出或是集电极开路(OC)输出功能的电平转换门。 电平转换的原理如图3-61所示。,5使用上拉电阻提升TTL电路高电平 当TTL门驱动5 V电压CMOS门时,由于TTL门的输出高电平不能满足CMOS门高电平的需求,使噪声容限为负值,因此需要提升TTL门的输出高电平。可以采用图3-62所示的电路.,6采用电阻

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论