




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷柯桥区第二中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知命题“p:x0,lnxx”,则p为( )Ax0,lnxxBx0,lnxxCx0,lnxxDx0,lnxx2 命题“设a、b、cR,若ac2bc2则ab”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A0B1C2D33 已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,则f(2)+g(2)=( )A16B16C8D84 已知命题p:对任意xR,总有3x0;命题q:“x2”是“x4”的充分不必要条件,则下列命题为真命题的是( )ApqBpqCpqDpq5 命题“若ab,则a8b8”的逆否命题是( )A若ab,则a8b8B若a8b8,则abC若ab,则a8b8D若a8b8,则ab6 设为双曲线的右焦点,若的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为,则双曲线的离心率为( )ABCD3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想7 函数f(x)=,则f(1)的值为( )A1B2C3D48 已知等比数列an的公比为正数,且a4a8=2a52,a2=1,则a1=( )AB2CD9 已知集合P=x|1xb,bN,Q=x|x23x0,xZ,若PQ,则b的最小值等于( )A0B1C2D310已知直线x+y+a=0与圆x2+y2=1交于不同的两点A、B,O是坐标原点,且,那么实数a的取值范围是( )ABCD11若关于x的方程x3x2x+a=0(aR)有三个实根x1,x2,x3,且满足x1x2x3,则a的取值范围为( )AaBa1Ca1Da112在空间中,下列命题正确的是( )A如果直线m平面,直线n内,那么mnB如果平面内的两条直线都平行于平面,那么平面平面C如果平面外的一条直线m垂直于平面内的两条相交直线,那么mD如果平面平面,任取直线m,那么必有m二、填空题13函数在区间上递减,则实数的取值范围是 14已知定义域为(0,+)的函数f(x)满足:(1)对任意x(0,+),恒有f(2x)=2f(x)成立;(2)当x(1,2时,f(x)=2x给出如下结论:对任意mZ,有f(2m)=0;函数f(x)的值域为0,+);存在nZ,使得f(2n+1)=9;“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在kZ,使得(a,b)(2k,2k+1)”;其中所有正确结论的序号是15【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=,对任意的m2,2,f(mx2)+f(x)0恒成立,则x的取值范围为_16若数列an满足:存在正整数T,对于任意的正整数n,都有an+T=an成立,则称数列an为周期为T的周期数列已知数列an满足:a1=m (ma ),an+1=,现给出以下三个命题:若 m=,则a5=2;若 a3=3,则m可以取3个不同的值;若 m=,则数列an是周期为5的周期数列其中正确命题的序号是17一个正四棱台,其上、下底面均为正方形,边长分别为和,侧棱长为,则其表面积为_.18在各项为正数的等比数列an中,若a6=a5+2a4,则公比q=三、解答题19已知复数z的共轭复数是,且复数z满足:|z1|=1,z0,且z在复平面上对应的点在直线y=x上求z及z的值20过抛物线y2=2px(p0)的焦点F作倾斜角为45的直线交抛物线于A、B两点,若线段AB的长为8,求抛物线的方程21(本小题满分12分)已知圆与圆:关于直线对称,且点在圆上.(1)判断圆与圆的位置关系; (2)设为圆上任意一点,三点不共线,为的平分线,且交于. 求证:与的面积之比为定值.22我市某校某数学老师这学期分别用m,n两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样)现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如图所示()依茎叶图判断哪个班的平均分高?()现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用表示抽到成绩为86分的人数,求的分布列和数学期望;()学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的22列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”下面临界值表仅供参考:P(K2k)0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828(参考公式:K2=,其中n=a+b+c+d)23已知a,b,c分别为ABC三个内角A,B,C的对边,且满足2bcosC=2ac()求B; ()若ABC的面积为,b=2求a,c的值24在锐角ABC中,角A、B、C的对边分别为a、b、c,且()求角B的大小;()若b=6,a+c=8,求ABC的面积柯桥区第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:因为特称命题的否定是全称命题,所以,命题“p:x0,lnxx”,则p为x0,lnxx故选:B【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查2 【答案】C【解析】解:命题“设a、b、cR,若ac2bc2,则c20,则ab”为真命题;故其逆否命题也为真命题;其逆命题为“设a、b、cR,若ab,则ac2bc2”在c=0时不成立,故为假命题故其否命题也为假命题故原命题及其逆命题、否命题、逆否命题中,真命题的个数为2个故选C【点评】本题考查的知识点是四种命题的真假判断,不等式的基本性质,其中熟练掌握互为逆否的两个命题真假性相同,是解答的关键3 【答案】B【解析】解:f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,f(2)g(2)=(2)32(2)2=16即f(2)+g(2)=f(2)g(2)=16故选:B【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力4 【答案】D【解析】解:p:根据指数函数的性质可知,对任意xR,总有3x0成立,即p为真命题,q:“x2”是“x4”的必要不充分条件,即q为假命题,则pq为真命题,故选:D【点评】本题主要考查复合命题的真假关系的应用,先判定p,q的真假是解决本题的关键,比较基础5 【答案】D【解析】解:根据逆否命题和原命题之间的关系可得命题“若ab,则a8b8”的逆否命题是:若a8b8,则ab故选D【点评】本题主要考查逆否命题和原命题之间的关系,要求熟练掌握四种命题之间的关系比较基础6 【答案】B【解析】7 【答案】A【解析】解:由题意可得f(1)=f(1+3)=f(2)=log22=1故选:A【点评】本题考查分度函数求值,涉及对数的运算,属基础题8 【答案】D【解析】解:设等比数列an的公比为q,则q0,a4a8=2a52,a62=2a52,q2=2,q=,a2=1,a1=故选:D9 【答案】C【解析】解:集合P=x|1xb,bN,Q=x|x23x0,xZ=1,2,PQ,可得b的最小值为:2故选:C【点评】本题考查集合的基本运算,交集的意义,是基础题10【答案】A【解析】解:设AB的中点为C,则因为,所以|OC|AC|,因为|OC|=,|AC|2=1|OC|2,所以2()21,所以a1或a1,因为1,所以a,所以实数a的取值范围是,故选:A【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题11【答案】B【解析】解:由x3x2x+a=0得a=x3x2x,设f(x)=x3x2x,则函数的导数f(x)=3x22x1,由f(x)0得x1或x,此时函数单调递增,由f(x)0得x1,此时函数单调递减,即函数在x=1时,取得极小值f(1)=111=1,在x=时,函数取得极大值f()=()3()2()=,要使方程x3x2x+a=0(aR)有三个实根x1,x2,x3,则1a,即a1,故选:B【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键12【答案】 C【解析】解:对于A,直线m平面,直线n内,则m与n可能平行,可能异面,故不正确;对于B,如果平面内的两条相交直线都平行于平面,那么平面平面,故不正确;对于C,根据线面垂直的判定定理可得正确;对于D,如果平面平面,任取直线m,那么可能m,也可能m和斜交,;故选:C【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题二、填空题13【答案】【解析】试题分析:函数图象开口向上,对称轴为,函数在区间上递减,所以.考点:二次函数图象与性质14【答案】 【解析】解:x(1,2时,f(x)=2xf(2)=0f(1)=f(2)=0f(2x)=2f(x),f(2kx)=2kf(x)f(2m)=f(22m1)=2f(2m1)=2m1f(2)=0,故正确;设x(2,4时,则x(1,2,f(x)=2f()=4x0若x(4,8时,则x(2,4,f(x)=2f()=8x0一般地当x(2m,2m+1),则(1,2,f(x)=2m+1x0,从而f(x)0,+),故正确;由知当x(2m,2m+1),f(x)=2m+1x0,f(2n+1)=2n+12n1=2n1,假设存在n使f(2n+1)=9,即2n1=9,2n=10,nZ,2n=10不成立,故错误;由知当x(2k,2k+1)时,f(x)=2k+1x单调递减,为减函数,若(a,b)(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确故答案为:15【答案】【解析】16【答案】 【解析】解:对于由an+1=,且a1=m=1,所以,1,a5=2 故正确;对于由a3=3,若a3=a21=3,则a2=4,若a11=4,则a1=5=m若,则若a11a1=,若0a11则a1=3,不合题意所以,a3=2时,m即a1的不同取值由3个故正确;若a1=m=1,则a2=,所a3=1,a4=故在a1=时,数列an是周期为3的周期数列,错;故答案为:【点评】本题主要考查新定义题目,属于创新性题目,但又让学生能有较大的数列的知识应用空间,是较好的题目17【答案】【解析】考点:棱台的表面积的求解.18【答案】2 【解析】解:由a6=a5+2a4得,a4q2=a4q+2a4,即q2q2=0,解得q=2或q=1,又各项为正数,则q=2,故答案为:2【点评】本题考查等比数列的通项公式,注意公比的符号,属于基础题三、解答题19【答案】 【解析】解:z在复平面上对应的点在直线y=x上且z0,设z=a+ai,(a0),|z1|=1,|a1+ai|=1,即=1,则2a22a+1=1,即a2a=0,解得a=0(舍)或a=1,即z=1+i, =1i,则z=(1+i)(1i)=2【点评】本题主要考查复数的基本运算,利用复数的几何意义利用待定系数法是解决本题的关键20【答案】 【解析】解:由题意可知过焦点的直线方程为y=x,联立,得,设A(x1,y1),B(x2,y2)根据抛物线的定义,得|AB|=x1+x2+p=4p=8,解得p=2抛物线的方程为y2=4x【点评】本题给出直线与抛物线相交,在已知被截得弦长的情况下求焦参数p的值着重考查了抛物线的标准方程和直线与圆锥曲线位置关系等知识,属于中档题21【答案】(1)圆与圆相离;(2)定值为2.【解析】试题分析:(1)若两圆关于直线对称,则圆心关于直线对称,并且两圆的半径相等,可先求得圆M的圆心,,然后根据圆心距与半径和比较大小,从而判断圆与圆的位置关系;(2)因为点G到AP和BP的距离相等,所以两个三角形的面积比值,根据点P在圆M上,代入两点间距离公式求和,最后得到其比值.试题解析:(1) 圆的圆心关于直线的对称点为,圆的方程为.,圆与圆相离.考点:1.圆与圆的位置关系;2.点与圆的位置关系.122【答案】 【解析】【专题】综合题;概率与统计【分析】()依据茎叶图,确定甲、乙班数学成绩集中的范围,即可得到结论;()由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,=0,1,2,求出概率,可得的分布列和数学期望;()根据成绩不低于85分的为优秀,可得22列联表,计算K2,从而与临界值比较,即可得到结论【解答】解:()由茎叶图知甲班数学成绩集中于609之间,而乙班数学成绩集中于80100分之间,所以乙班的平均分高()由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,=0,1,2P(=0)=,P(=1)=,P(=2)=则随机变量的分布列为012P数学期望E=0+1+2=人()22列联表为甲班乙班合计优秀31013不优秀171027合计202040K2=5.5845.024因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关【点评】本题考查概率的计算,考查独立性检验知识,考查学生的计算能力,属于中档题23【答案】 【解析】解:()已知等式2bcosC=2ac,利用正弦定理化简得:2sinBcosC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 塑料焊工中秋节后复工安全考核试卷含答案
- 北师大版三年级数学口算训练题
- 钻井协作工节假日前安全考核试卷含答案
- 幼儿园后勤管理会议讲话稿
- 关于实验教学总结范文合集5篇
- 炭素浸渍工节假日前安全考核试卷含答案
- 海水鱼类养殖工节假日前安全考核试卷含答案
- 文秘人员工作技能提升培训教材与实操案例
- 关于五年级五单元的作文300字十篇
- 建筑管桩施工质量管理方案
- 120救护车仪器设备理论考核试题(含答案)
- 胸痛教学查房课件
- 开贷款中介公司策划方案
- 吉林省榆树一中五校联考2025届高二化学第二学期期末教学质量检测试题含解析
- 红十字三献知识培训课件
- 排球教学论文
- 《小学教师专业发展》课件-第二章 教师是如何发展的
- 心内科患者饮食护理要点
- 商业保洁服务合同协议书
- 解除市场经营协议书
- 育苗协议书范本
评论
0/150
提交评论