




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷会宁县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 如图在圆中,是圆互相垂直的两条直径,现分别以,为直径作四个圆,在圆内随机取一点,则此点取自阴影部分的概率是( )DABCOA B C D【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度2 圆()与双曲线的渐近线相切,则的值为( )A B C D【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力3 函数是( )A最小正周期为2的奇函数B最小正周期为的奇函数C最小正周期为2的偶函数D最小正周期为的偶函数4 复数z=(其中i是虚数单位),则z的共轭复数=( )AiBiC +iD +i5 已知抛物线与双曲线的一个交点为M,F为抛物线的焦点,若,则该双曲线的渐近线方程为 A、 B、 C、 D、6 等于( )A B C D7 不等式ax2+bx+c0(a0)的解集为R,那么( )Aa0,0Ba0,0Ca0,0Da0,08 某三棱锥的三视图如图所示,该三棱锥的表面积是 A、 B、 C、 D、 9 圆心为(1,1)且过原点的圆的方程是( )A2=1B2=1C2=2D2=210在ABC中,sinB+sin(AB)=sinC是sinA=的( )A充分非必要条件B必要非充分条件C充要条件D既不充分也非必要条件11若复数(2+ai)2(aR)是实数(i是虚数单位),则实数a的值为( )A2B2C0D212下列命题中的说法正确的是( )A命题“若x2=1,则x=1”的否命题为“若x2=1,则x1”B“x=1”是“x2+5x6=0”的必要不充分条件C命题“xR,使得x2+x+10”的否定是:“xR,均有x2+x+10”D命题“在ABC中,若AB,则sinAsinB”的逆否命题为真命题二、填空题13棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 14抛物线y2=8x上到焦点距离等于6的点的坐标是15甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一个红球的概率为 16已知函数f(x)的定义域为1,5,部分对应值如下表,f(x)的导函数y=f(x)的图象如图示 x1045f(x)1221下列关于f(x)的命题:函数f(x)的极大值点为0,4;函数f(x)在0,2上是减函数;如果当x1,t时,f(x)的最大值是2,那么t的最大值为4;当1a2时,函数y=f(x)a有4个零点;函数y=f(x)a的零点个数可能为0、1、2、3、4个其中正确命题的序号是17长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是18定义在上的可导函数,已知的图象如图所示,则的增区间是 xy121O三、解答题19已知椭圆C: +=1(ab0)的左,右焦点分别为F1,F2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切()求椭圆C的方程;()如图,若斜率为k(k0)的直线l与x轴,椭圆C顺次交于P,Q,R(P点在椭圆左顶点的左侧)且RF1F2=PF1Q,求证:直线l过定点,并求出斜率k的取值范围20提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20x200时,车流速度v是车流密度x的一次函数()当0x200时,求函数v(x)的表达式;()当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值(精确到1辆/小时) 21求函数f(x)=4x+4在0,3上的最大值与最小值22设点P的坐标为(x3,y2)(1)在一个盒子中,放有标号为1,2,3的三张卡片,现在从盒子中随机取出一张卡片,记下标号后把卡片放回盒中,再从盒子中随机取出一张卡片记下标号,记先后两次抽取卡片的标号分别为x、y,求点P在第二象限的概率;(2)若利用计算机随机在区间上先后取两个数分别记为x、y,求点P在第三象限的概率23(本小题满分12分)111在如图所示的几何体中,是的中点,.(1)已知,求证:平面; (2)已知分别是和的中点,求证: 平面.24甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛现已比赛了4场,且甲篮球队胜3场已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为()求甲队分别以4:2,4:3获胜的概率;()设X表示决出冠军时比赛的场数,求X的分布列及数学期望会宁县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】【解析】设圆的半径为,根据图形的对称性,可以选择在扇形中研究问题,过两个半圆的交点分别向,作垂线,则此时构成一个以为边长的正方形,则这个正方形内的阴影部分面积为,扇形的面积为,所求概率为2 【答案】C3 【答案】B【解析】解:因为=cos(2x+)=sin2x所以函数的周期为: =因为f(x)=sin(2x)=sin2x=f(x),所以函数是奇函数故选B【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数的基本性质,考查计算能力4 【答案】C【解析】解:z=,=故选:C【点评】本题考查了复数代数形式的乘除运算,是基础题5 【答案】【解析】:依题意,不妨设点M在第一象限,且Mx0,y0,由抛物线定义,|MF|x0,得5x02.x03,则y24,所以M3,2,又点M在双曲线上,241,则a2,a,因此渐近线方程为5x3y0.6 【答案】D【解析】试题分析:原式考点:余弦的两角和公式.7 【答案】A【解析】解:不等式ax2+bx+c0(a0)的解集为R,a0,且=b24ac0,综上,不等式ax2+bx+c0(a0)的解集为的条件是:a0且0故选A8 【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,所求表面积为三棱锥四个面的面积之和。利用垂直关系和三角形面积公式,可得:,因此该几何体表面积,故选B9 【答案】D【解析】解:由题意知圆半径r=,圆的方程为2=2故选:D【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题10【答案】A【解析】解:sinB+sin(AB)=sinC=sin(A+B),sinB+sinAcosBcosAsinB=sinAcosB+cosAsinB,sinB=2cosAsinB,sinB0,cosA=,A=,sinA=,当sinA=,A=或A=,故在ABC中,sinB+sin(AB)=sinC是sinA=的充分非必要条件,故选:A11【答案】C【解析】解:复数(2+ai)2=4a2+4ai是实数,4a=0,解得a=0故选:C【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题12【答案】D【解析】解:A命题“若x2=1,则x=1”的否命题为“若x21,则x1”,故A错误,B由x2+5x6=0得x=1或x=6,即“x=1”是“x2+5x6=0”既不充分也不必要条件,故B错误,C命题“xR,使得x2+x+10”的否定是:“xR,均有x2+x+105,故C错误,D若AB,则ab,由正弦定理得sinAsinB,即命题“在ABC中,若AB,则sinAsinB”的为真命题则命题的逆否命题也成立,故D正确故选:D【点评】本题主要考查命题的真假判断,涉及四种命题的关系以及充分条件和必要条件的判断,含有量词的命题的否定,比较基础二、填空题13【答案】【解析】考点:球的体积与表面积【方法点晴】本题主要考查了球的体积与表面积的计算,其中解答中涉及到正方体的外接球的性质、组合体的结构特征、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于基础题,本题的解答中仔细分析,得出正方体的体对角线的长就外接球的直径是解答的关键14【答案】(4,) 【解析】解:抛物线方程为y2=8x,可得2p=8, =2抛物线的焦点为F(2,0),准线为x=2设抛物线上点P(m,n)到焦点F的距离等于6,根据抛物线的定义,得点P到F的距离等于P到准线的距离,即|PF|=m+2=6,解得m=4,n2=8m=32,可得n=4,因此,点P的坐标为(4,)故答案为:(4,)【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标着重考查了抛物线的定义与标准方程等知识,属于基础题15【答案】【解析】【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求另外在确定基本事件时,可以看成是有序的,如与不同;有时也可以看成是无序的,如相同(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用求解较好16【答案】 【解析】解:由导数图象可知,当1x0或2x4时,f(x)0,函数单调递增,当0x2或4x5,f(x)0,函数单调递减,当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2),所以正确;正确;因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x1,t函数f(x)的最大值是4,当2t5,所以t的最大值为5,所以不正确;由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)a有几个零点,所以不正确,根据函数的单调性和极值,做出函数的图象如图,(线段只代表单调性),根据题意函数的极小值不确定,分f(2)1或1f(2)2两种情况,由图象知,函数y=f(x)和y=a的交点个数有0,1,2,3,4等不同情形,所以正确,综上正确的命题序号为故答案为:【点评】本题考查导数知识的运用,考查导函数与原函数图象之间的关系,正确运用导函数图象是关键17【答案】50 【解析】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:;则这个球的表面积是: =50故答案为:50【点评】本题是基础题,考查球的内接多面体的有关知识,球的表面积的求法,注意球的直径与长方体的对角线的转化是本题的解答的关键,考查计算能力,空间想象能力18【答案】(,2)【解析】试题分析:由,所以的增区间是(,2)考点:函数单调区间三、解答题19【答案】 【解析】()解:椭圆的左,右焦点分别为F1(c,0),F2(c,0),椭圆的离心率为,即有=,即a=c,b=c,以原点为圆心,椭圆的短半轴长为半径的圆方程为x2+y2=b2,直线y=x+与圆相切,则有=1=b,即有a=,则椭圆C的方程为+y2=1;()证明:设Q(x1,y1),R(x2,y2),F1(1,0),由RF1F2=PF1Q,可得直线QF1和RF1关于x轴对称,即有+=0,即+=0,即有x1y2+y2+x2y1+y1=0,设直线PQ:y=kx+t,代入椭圆方程,可得(1+2k2)x2+4ktx+2t22=0,判别式=16k2t24(1+2k2)(2t22)0,即为t22k21x1+x2=,x1x2=,y1=kx1+t,y2=kx2+t,代入可得,(k+t)(x1+x2)+2t+2kx1x2=0,将代入,化简可得t=2k,则直线l的方程为y=kx+2k,即y=k(x+2)即有直线l恒过定点(2,0)将t=2k代入,可得2k21,解得k0或0k则直线l的斜率k的取值范围是(,0)(0,)【点评】本题考查椭圆的方程和性质,主要是离心率的运用,注意运用直线和圆相切的条件,联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题和易错题20【答案】 【解析】解:() 由题意:当0x20时,v(x)=60;当20x200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为()依题并由()可得当0x20时,f(x)为增函数,故当x=20时,其最大值为6020=1200当20x200时,当且仅当x=200x,即x=100时,等号成立所以,当x=100时,f(x)在区间(20,200上取得最大值综上所述,当x=100时,f(x)在区间0,200上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时答:() 函数v(x)的表达式() 当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时 21【答案】 【解析】解:,f(x)=x24,由f(x)=x24=0,得x=2,或x=2,x0,3,x=2,当x变化时,f(x),f(x)的变化情况如下表:x0(0,2)2(2,3)3f(x)0+f(x)4单调递减极小值单调递增1由上表可知,当x=0时,f(x)max=f(0)=4,当x=2时,22【答案】 【解析】解:(1)由已知得,基本事件(2,1),(2,0),(2,1),(1,1),(1,0),(1,1),(0,1),(0,0)(0,1)共9种4(分)设“点P在第二象限”为事件A,事件A有(2,1),(1,1)共2种则P(A)=6(分)(2)设“点P在第三象限”为事件B,则事件B满足8(分),作出不等式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论