




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2018版高考数学大一轮复习 第十章 统计与统计案例 10.2 用样本估计总体教师用书 文 新人教版1作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差)(2)决定组距与组数(3)将数据分组(4)列频率分布表(5)画频率分布直方图2频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图(2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线3茎叶图统计中还有一种被用来表示数据的图叫做茎叶图,茎是指中间的一列数,叶就是从茎的旁边生长出来的数4标准差和方差(1)标准差是样本数据到平均数的一种平均距离(2)标准差:s .(3)方差:s2(x1)2(x2)2(xn)2(xn是样本数据,n是样本容量,是样本平均数)【知识拓展】1频率分布直方图的特点(1)频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示,频率组距.(2)频率分布直方图中各小长方形的面积之和为1,因为在频率分布直方图中组距是一个固定值,所以各小长方形高的比也就是频率比(3)频率分布表和频率分布直方图是一组数据频率分布的两种形式,前者准确,后者直观2平均数、方差的公式推广(1)若数据x1,x2,xn的平均数为,那么mx1a,mx2a,mx3a,mxna的平均数是ma.(2)数据x1,x2,xn的方差为s2.数据x1a,x2a,xna的方差也为s2;数据ax1,ax2,axn的方差为a2s2.【思考辨析】判断下列结论是否正确(请在括号中打“”或“”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势()(2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论()(3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了()(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次()(5)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数()(6)在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的()1.(教材改编)若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是()A91.5和91.5 B91.5和92C91和91.5 D92和92答案A解析这组数据由小到大排列为87,89,90,91,92,93,94,96,中位数是91.5,平均数91.5.2(2015陕西)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A93 B123 C137 D167答案C解析由题干扇形统计图可得该校女教师人数为11070%150(160%)137.故选C.3一个容量为66的样本,数据的分组及各组的频数如下:11.5,15.5)2;15.5,19.5)4;19.5,23.5)9;23.5,27.5)18;27.5,31.5)11;31.5,35.5)12;35.5,39.5)7;39.5,43.5)3.根据样本的频率分布估计,数据落在31.5,43.5)的概率约是()A. B. C. D.答案B解析由已知,样本容量为66,而落在31.5,43.5)内的样本数为127322,故所求概率为.4(2016江苏)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是_答案0.1解析5.1,则方差s2(4.75.1)2(4.85.1)2(5.15.1)2(5.45.1)2(5.55.1)20.1.5为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间80,130上,其频率分布直方图如图所示,则在抽测的60株树木中,有_株树木的底部周长小于100 cm.答案24解析底部周长在80,90)的频率为0.015100.15,底部周长在90,100)的频率为0.025100.25,样本容量为60,所以树木的底部周长小于100 cm的株数为(0.150.25)6024.题型一频率分布直方图的绘制与应用例1(2016北京)某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替当w3时,估计该市居民该月的人均水费解(1)如图所示,用水量在0.5,3)的频率的和为(0.20.30.40.50.3)0.50.85.用水量小于等于3立方米的频率为0.85,又w为整数,为使80%以上的居民在该月的用水价格为4元/立方米,w至少定为3.(2)当w3时,该市居民该月的人均水费估计为(0.110.151.50.220.252.50.153)40.15340.05(3.53)0.05(43)0.05(4.53)107.21.81.510.5(元)即该市居民该月的人均水费估计为10.5元思维升华(1)明确频率分布直方图的意义,即图中的每一个小矩形的面积是数据落在该区间上的频率,所有小矩形的面积和为1.(2)对于统计图表类题目,最重要的是认真观察图表,从中提炼有用的信息和数据(2015课标全国)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表A地区用户满意度评分的频率分布直方图图B地区用户满意度评分的频数分布表满意度评分分组50,60)60,70)70,80)80,90)90,100频数2814106(1)在图中作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均数及分散程度(不要求计算出具体值,给出结论即可)B地区用户满意度评分的频率分布直方图图(2)根据用户满意度评分,将用户的满意度分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由解(1)如图所示通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均数高于A地区用户满意度评分的平均数;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散(2)A地区用户的满意度等级为不满意的概率大记CA表示事件:“A地区用户的满意度等级为不满意”;CB表示事件:“B地区用户的满意度等级为不满意”由直方图得P(CA)的估计值为(0.010.020.03)100.6,P(CB)的估计值为(0.0050.02)100.25.所以A地区用户的满意度等级为不满意的概率大题型二茎叶图的应用例2(1)(2015山东)为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:)制成如图所示的茎叶图考虑以下结论:甲地该月14时的平均气温低于乙地该月14时的平均气温;甲地该月14时的平均气温高于乙地该月14时的平均气温;甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差其中根据茎叶图能得到的统计结论的编号为()A B C D(2)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A2,5 B5,5 C5,8 D8,8答案(1)B(2)C解析(1)甲地5天的气温为26,28,29,31,31,其平均数为甲29;方差为s(2629)2(2829)2(2929)2(3129)2(3129)23.6;标准差为s甲.乙地5天的气温为28,29,30,31,32,其平均数为乙30;方差为s(2830)2(2930)2(3030)2(3130)2(3230)22;标准差为s乙.甲乙,s甲s乙(2)由茎叶图及已知得x5,又乙组数据的平均数为16.8,即16.8,解得y8.引申探究1本例(2)中条件不变,试比较甲、乙两组哪组成绩较好解由原题可知x5,则甲组平均数为17.4.而乙组平均数为16.8,所以甲组成绩较好2在本例(2)条件下:求乙组数据的中位数、众数;求乙组数据的方差解由茎叶图知,乙组中五名学生的成绩为9,15,18,18,24.故中位数为18,众数为18.s2(916.8)2(1516.8)2(1816.8)22(2416.8)223.76.思维升华茎叶图的优缺点由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示其缺点是当样本容量较大时,作图较烦琐(1)某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示,以组距为5将数据分组成0,5),5,10),30,35),35,40时,所作的频率分布直方图是()(2)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为()A. B. C36 D.答案(1)A(2)B解析(1)由于频率分布直方图的组距为5,排除C、D,又0,5),5,10)两组各一人,排除B,应选A.(2)由题意知91,解得x4.所以s2(8791)2(9491)2(9091)2(9191)2(9091)2(9491)2(9191)2(16910190).题型三用样本的数字特征估计总体的数字特征例3(1)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:运动员第1次第2次第3次第4次第5次甲8791908993乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为_答案2解析甲(8791908993)90,乙(8990918892)90,s(8790)2(9190)2(9090)2(8990)2(9390)24,s(8990)2(9090)2(9190)2(8890)2(9290)22.(2)甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图分别求出两人得分的平均数与方差;根据图和上面算得的结果,对两人的训练成绩作出评价解由图象可得甲、乙两人五次测试的成绩分别为甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分甲13;乙13,s(1013)2(1313)2(1213)2(1413)2(1613)24;s(1313)2(1413)2(1213)2(1213)2(1413)20.8.由ss,可知乙的成绩较稳定从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高思维升华平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小(2016全国乙卷)某公司计划购买1台机器,该种机器使用三年后即被淘汰机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元在机器使用期间,如果备件不足再购买,则每个500元现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得以下柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数(1)若n19,求y与x的函数解析式;(2)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?解(1)当x19时,y3 800;当x19时,y3 800500(x19)500x5 700.所以y与x的函数解析式为y(xN)(2)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n的最小值为19.(3)若每台机器在购机的同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800元,20台的费用为4 300元,10台的费用为4 800元,因此这100台机器在购买易损零件上所需费用的平均数为(3 800704 300204 80010)4 000(元),若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000元,10台的费用为4 500元,因此这100台机器在购买易损零件上所需费用的平均数为(4 000904 50010)4 050(元)比较两个平均数可知,购买1台机器的同时应购买19个易损零件9高考中频率分布直方图的应用考点分析频率分布直方图是高考考查的热点,考查频率很高,题型有选择题、填空题,也有解答题,难度为低中档用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致通过频率分布表和频率分布直方图可以对总体作出估计频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误典例(12分)(2016四川)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照0,0.5),0.5,1),4,4.5分成9组,制成了如图所示的频率分布直方图(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数规范解答解(1)由频率分布直方图可知,月均用水量在0,0.5)的频率为0.080.50.04.同理,在0.5,1),1.5,2),2,2.5),3,3.5),3.5,4),4,4.5等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.3分由1(0.040.080.210.250.060.040.02)0.5a0.5a,解得a0.30.5分(2)由(1)知,100位居民月均用水量不低于3吨的频率为0.060.040.020.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 0000.1236 000.8分(3)设中位数为x吨因为前5组的频率之和为0.040.080.150.210.250.730.5.而前4组的频率之和为0040.080.150.210.480.5.所以2xa2Ba2a1Ca1a2Da1,a2的大小与m的值有关答案B解析去掉一个最高分和一个最低分后,甲选手叶上的数字之和是20,乙选手叶上的数字之和是25,故a2a1.故选B.6(2016北京朝阳区期末)在一段时间内有2 000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示若该处高速公路规定正常行驶速度为90 km/h120 km/h,试估计2 000辆车中,在这段时间内以正常速度通过该处的汽车约有()A30辆 B300辆C170辆 D1 700辆答案D解析以正常速度通过该处的汽车频率为1(0.010.005)100.85,所以以正常速度通过该处的汽车约有0.852 0001 700(辆)7样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均数为1,则样本方差为_答案2解析由题意可知样本的平均数为1,所以1,解得a1,所以样本的方差为(11)2(01)2(11)2(21)2(31)22.8从某小学随机抽取100名学生,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)由图中数据可知a_.若要从身高在120,130),130,140),140,150三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在140,150内的学生中选取的人数应为_答案0.0303解析小矩形的面积等于频率,除120,130)外的频率和为0.700,a0.030.由题意知,身高在120,130),130,140),140,150内的学生分别为30人,20人,10人,由分层抽样可知抽样比为,在140,150中选取的学生应为3人9若样本数据x1,x2,x10的标准差为8,则数据2x11,2x21,2x101的标准差为_答案16解析若x1,x2,xn的标准差为s,则ax1b,ax2b,axnb的标准差为as.由题意s8,则上述标准差为2816.10某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是0,100,样本数据分组为0,20),20,40),40,60),60,80),80,100则(1)图中的x_;(2)若上学所需时间不少于1小时的学生可申请在学校住宿,则该校600名新生中估计有_名学生可以申请住宿答案(1)0.012 5(2)72解析(1)由频率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年内科主治医师考试临床病例试题及答案
- 2024年导游专业:导游业务基本常识岗前培训考试题库(附含答案)
- 内蒙古自治区包头市2024-2025学年七年级下学期期末语文试题(解析版)
- 摄影器材基本知识培训课件
- 区域技术面试试题及答案
- 2025农产品购销合同
- 2025智能设备租赁合同
- 面试热点追踪:淄川国企面试题解析
- 央企面试技巧大全:各岗位面试题目及应对策略
- 面试高手必读指南:各行业面试试题与答题技巧
- 蓄水池检验批质量验收记录(海绵城市质检表格)
- 单梁起重机安全操作培训课件
- 电动力学-同济大学中国大学mooc课后章节答案期末考试题库2023年
- 脑出血诊治指南
- 2022年重庆市汽车运输(集团)有限责任公司招聘考试真题
- 结构方案论证会汇报模板参考83P
- 《企业人力资源管理专业实践报告2500字》
- 移植患者健康宣教 - 副本课件
- 魏家庄村道路实施方案
- 医养结合五大模式和八大服务内容
- GFL-V型防雷分线柜.说明书(弹簧式接线9、10、13个)20131213版教学内容
评论
0/150
提交评论