已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第5讲直线、平面垂直的判定与性质考纲解读掌握线线、线面、面面垂直的判定定理和性质定理,并能应用它们证明有关空间图形的垂直关系的简单命题(重点、难点)考向预测从近三年高考情况来看,本讲是高考的必考内容预测2020年将会以以下两种方式进行考查:以几何体为载体考查线面垂直的判定和性质;根据垂直关系的性质进行转化试题以解答题第一问直接考查,难度不大,属中档题型.1直线与平面垂直判定定理与性质定理2平面与平面垂直判定定理与性质定理3直线和平面所成的角(1)定义:一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角(2)范围:.4二面角(1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角;在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角(2)范围:0,5必记结论(1)若两条平行线中一条垂直于一个平面,则另一条也垂直于这个平面(2)若一条直线垂直于一个平面,则这条直线垂直于这个平面内任何一条直线(3)过空间任一点有且只有一条直线与已知平面垂直(4)过空间任一点有且只有一个平面与已知直线垂直(5)两平面垂直的性质定理是把面面垂直转化为线面垂直(6)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面1概念辨析(1)直线l与平面内的无数条直线都垂直,则l.()(2)垂直于同一个平面的两平面平行()(3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面()(4)若平面内的一条直线垂直于平面内的无数条直线,则.()答案(1)(2)(3)(4) 2小题热身(1)下列命题中不正确的是()A如果平面平面,且直线l平面,则直线l平面B如果平面平面,那么平面内一定存在直线平行于平面C如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面D如果平面平面,平面平面,l,那么l答案A解析A错误,如图1所示,在长方体中,l,但l;B正确,设l,则内与l平行的直线都与平行;C正确,由面面垂直的判定可知;D正确,如图2所示,在平面内,作与交线的垂线m,在平面内作与的交线的垂线n,由得m,由得n,所以mn.可推出m,进而推出ml,所以l. (2)如图所示,在正方体ABCDA1B1C1D1中,点O,M,N分别是线段BD,DD1,D1C1的中点,则直线OM与AC,MN的位置关系是()A与AC,MN均垂直B与AC垂直,与MN不垂直C与AC不垂直,与MN垂直D与AC,MN均不垂直答案A解析由AC平面BB1D1D可得OMAC.设正方体ABCDA1B1C1D1的棱长为2a.则OM a,MNa.ONa,所以OM2MN2ON2,所以OMMN.(3)如图,在长方体ABCDA1B1C1D1中,ABBC2,AA11,则AC1与平面A1B1C1D1所成角的正弦值为_答案解析连接A1C1,则AC1A1为AC1与平面A1B1C1D1所成的角因为ABBC2,所以A1C1AC2,又AA11,所以AC13,所以sinAC1A1.(4)已知PD垂直于菱形ABCD所在的平面,连接PB,PC,PA,AC,BD,则一定互相垂直的平面有_对答案4解析由于PD平面ABCD,故平面PAD平面ABCD,平面PDB平面ABCD,平面PDC平面ABCD,由于AC平面PDB,平面PAC平面PDB,共4对题型直线与平面的位置关系角度1直线与平面所成的角1(2018全国卷)在长方体ABCDA1B1C1D1中,ABBC2,AC1与平面BB1C1C所成的角为30,则该长方体的体积为()A8B6C8D8答案C解析在长方体ABCDA1B1C1D1中,连接BC1,根据线面角的定义可知AC1B30,因为AB2,tan30,所以BC12,从而求得CC12,所以该长方体的体积为V2228.故选C.角度2直线与平面垂直的判定和性质2(2018全国卷)如图,在三棱锥PABC中,ABBC2,PAPBPCAC4,O为AC的中点(1)证明:PO平面ABC;(2)若点M在棱BC上,且MC2MB,求点C到平面POM的距离解(1)证明:因为APCPAC4,O为AC的中点,所以OPAC,且OP2.连接OB,因为ABBCAC,所以ABC为等腰直角三角形,且OBAC,OBAC2.由OP2OB2PB2知OPOB.由OPOB,OPAC,ACOBO,知PO平面ABC.(2)作CHOM,垂足为H.又由(1)可得OPCH,所以CH平面POM.故CH的长为点C到平面POM的距离由题设可知OCAC2,CMBC,ACB45.所以OM,CH.所以点C到平面POM的距离为.1求直线和平面所成角的步骤(1)寻找过斜线上一点与平面垂直的直线(2)连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角(3)把该角归结在某个三角形中,通过解三角形,求出该角2证明直线与平面垂直的常用方法(1)利用线面垂直的判定定理,这是主要证明方法(2)利用“两平行线中的一条与平面垂直,则另一条也与这个平面垂直”(3)利用“一条直线垂直于两个平行平面中的一个,则与另一个也垂直”(4)利用面面垂直的性质定理 1已知一个正四棱柱的体对角线长为,且体对角线与底面所成的角的余弦值为,则该四棱柱的表面积为_答案10解析如图可知,BD,DD12,底面边长AB1,所以所求表面积为4AA1AB2AB242121210.2如图,S是RtABC所在平面外一点,且SASBSC,D为斜边AC的中点(1)求证:SD平面ABC;(2)若ABBC,求证:BD平面SAC.证明(1)如图所示,取AB的中点E,连接SE,DE,在RtABC中,D,E分别为AC,AB的中点DEBC,DEAB,SASB,SEAB.又SEDEE,AB平面SDE.又SD平面SDE,ABSD.在SAC中,SASC,D为AC的中点,SDAC.又ACABA,SD平面ABC.(2)由于ABBC,则BDAC,由(1)可知,SD平面ABC,又BD平面ABC,SDBD,又SDACD,BD平面SAC.题型 面面垂直的判定与性质1如图,AB是O的直径,PA垂直于O所在平面,C是圆周上不同于A,B两点的任意一点,且AB2,PABC,则二面角ABCP的大小为_答案60解析因为AB为O的直径,所以ACBC,又因为PA平面ABC,所以PABC,可求得BCPC,所以PCA为二面角ABCP的平面角因为ACB90,AB2,PABC,所以AC1,所以在RtPAC中,tanPCA.所以PCA60.2. 如图,已知在四棱锥PABCD中,底面ABCD是边长为4的正方形,PAD是正三角形,平面PAD平面ABCD,E,F,G分别是PD,PC,BC的中点(1)求证:平面EFG平面PAD;(2)若M是线段CD上一点,求三棱锥MEFG的体积解(1)证明:因为平面PAD平面ABCD,平面PAD平面ABCDAD,CD平面ABCD,且CDAD,所以CD平面PAD.又因为在PCD中,E,F分别是PD,PC的中点,所以EFCD,所以EF平面PAD.因为EF平面EFG,所以平面EFG平面PAD.(2)因为EFCD,EF平面EFG,CD平面EFG,所以CD平面EFG,因此CD上的点M到平面EFG的距离等于点D到平面EFG的距离,所以V三棱锥MEFGV三棱锥DEFG,取AD的中点H,连接GH,EH,FH,则EFGH,因为EF平面PAD,EH平面PAD,所以EFEH.于是SEFHEFEH2SEFG,因为平面EFG平面PAD,平面EFG平面PADEH,EHD是正三角形,所以点D到平面EFG的距离等于正三角形EHD的高,即为.所以三棱锥MEFG的体积V三棱锥MEFGV三棱锥DEFGSEFG.结论探究1在举例说明1条件下,求证:平面PAC平面PBC.证明因为PA垂直于O所在平面,BC在O所在平面内,所以BCPA.因为AB是O的直径,C是圆周上不同于A,B的两点所以BCAC,又PAACA,所以BC平面PAC,又BC平面PBC.所以平面PAC平面PBC.结论探究2在举例说明1条件下,求二面角APBC的正切值解过A作AFPC,垂足为F,过F作FEPB,垂足为E,连接AE,由举例说明1易得BC平面PAC.又AF平面PAC,所以AFBC.又PCBCC,所以AF平面PBC.所以PBAF,又PBEF,AFEFF,所以PB平面AEF,所以AEF为二面角APBC的平面角,在RtPAC中,AC1,PA,PAC90.所以tanPCA,PCA60,所以CF1cos60,AF1sin60.在RtPBC中,PC2,BC,PCB90,PB.由PEFPCB得,所以,EF,在RtAEF中,tanAEF,即二面角APBC的正切值为.1证明面面垂直的两种方法(1)定义法:利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题(2)定理法:利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决2作二面角的平面角的方法(1)定义法:在棱上取点,分别在两面内引两条射线与棱垂直,这两条射线所成的角就是二面角的平面角如举例说明1.(2)垂线法:如图所示,作PO,垂足为,作OAl,垂足为A,连接PA,则PAO为二面角l的平面角(3)补棱法:针对在解构成二面角的两个半平面没有明确交线的求二面角问题时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法或三垂线法解题(4)射影面积法:二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式求出二面角的大小(5)向量法(最常用)(6)转化为线面角:如图,求l的二面角,即求AB与所成的角 如图,三棱柱ABCA1B1C1中,A1A平面ABC,ACB90,M是AB的中点,ACCBCC12.(1)求证:平面A1CM平面ABB1A1;(2)求点M到平面A1CB1的距离解(1)证明:由A1A平面ABC,CM平面ABC,则A1ACM.ACCB,M是AB的中点,ABCM.又A1AABA.CM平面ABB1A1,又CM平面A1CM,平面A1CM平面ABB1A1.(2)设点M到平面A1CB1的距离为h,由题意可知A1CCB1A1B12MC2,SA1CB1(2)22,SA1MB1S四边形ABB1A1222.由(1)可知CM平面ABB1A1,得VCA1MB1MCSA1MB1VMA1CB1hSA1CB1.点M到平面A1CB1的距离h.题型 平面图形的翻折问题(2018全国卷)如图,在平行四边形ABCM中,ABAC3,ACM90,以AC为折痕将ACM折起,使点M到达点D的位置,且ABDA.(1)证明:平面ACD平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BPDQDA,求三棱锥QABP的体积解(1)证明:由已知可得BAC90,即ABAC.又ABDA,且ACDAA,所以AB平面ACD.又AB平面ABC,所以平面ACD平面ABC.(2)由已知可得,DCCMABAC3,DA3.又BPDQDA,所以BP2.作QEAC,垂足为E,则QE綊DC.由已知及(1)可得DC平面ABC,所以QE平面ABC,QE1.因此,三棱锥QABP的体积为V三棱锥QABPQESABP132sin451.平面图形翻折为空间图形问题的解题关键是看翻折前后线面位置关系的变化,根据翻折的过程找到翻折前后线线位置关系中没有变化的量和发生变化的量,这些不变的和变化的量反映了翻折后的空间图形的结构特征解决此类问题的步骤为: (2018合肥二检)如图1,在平面五边形ABCDE中,ABCE,且AE2,AEC60,CDED,cosEDC.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年东营科技职业学院单招职业倾向性考试必刷测试卷带答案解析
- 2026年山东铝业职业学院单招职业倾向性测试必刷测试卷带答案解析
- 2026年云南交通职业技术学院单招职业倾向性测试题库及答案解析(夺冠系列)
- 2026年信阳涉外职业技术学院单招职业适应性考试必刷测试卷及答案解析(夺冠系列)
- 地形地貌与灾害风险评估
- 房屋布置解压协议书
- 房屋承让协议书模板
- 房屋拆除新建协议书
- 房屋收回结清协议书
- 房屋流转使用协议书
- T-BMCA 029-2024 军工涉密业务咨询服务单位安全保密体系建设规范
- 山西省晋中市榆次区2024-2025学年八年级上学期期末学业水平质量监测道德与法治试卷(含答案)
- CAXA实体设计教程课件
- 网络设备生命周期管理-洞察分析
- 白居易《长恨歌》课件
- 人教版语文七年级上册期中测试卷及参考答案(3套题)
- ICU进修总结汇报课件
- 我的家乡成都课件
- 管理体系文件审查
- 电缆维护与保护方案
- DL∕T 5210.6-2019 电力建设施工质量验收规程 第6部分:调整试验
评论
0/150
提交评论