江苏2017届高三数学板块命题点专练十二圆锥曲线理.docx_第1页
江苏2017届高三数学板块命题点专练十二圆锥曲线理.docx_第2页
江苏2017届高三数学板块命题点专练十二圆锥曲线理.docx_第3页
江苏2017届高三数学板块命题点专练十二圆锥曲线理.docx_第4页
江苏2017届高三数学板块命题点专练十二圆锥曲线理.docx_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

板块命题点专练(十二) 圆锥曲线1.(2015广东高考改编)已知椭圆1(m0)的左焦点为F1(4,0),则m_.解析:由左焦点为F1(4,0)知c4.又a5,25m216,解得m3或3.又m0,故m3.答案:32(2015福建高考改编)已知椭圆E:1(ab0)的右焦点为F,短轴的一个端点为M,直线l:3x4y0交椭圆E于A,B两点若|AF|BF|4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是_解析:根据椭圆的对称性及椭圆的定义可得A,B两点到椭圆左、右焦点的距离为4a2(|AF|BF|)8,所以a2.又d,所以1b2,所以e .因为1b2,所以0e.答案:3(2015浙江高考)椭圆1(ab0 )的右焦点F(c,0)关于直线yx的对称点Q在椭圆上,则椭圆的离心率是_解析:设椭圆的另一个焦点为F1(c,0),如图,连接QF1,QF,设QF与直线yx交于点M.由题意知M为线段QF的中点,且OMFQ.又O为线段F1F的中点,F1QOM,F1QQF,|F1Q|2|OM|.在RtMOF中,tanMOF,|OF|c,可解得|OM|,|MF|,故|QF|2|MF|,|QF1|2|OM|.由椭圆的定义得|QF|QF1|2a,整理得bc,ac,故e.答案:4(2015陕西高考)已知椭圆E:1(ab0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.(1)求椭圆E的离心率;(2)如图,AB是圆M:(x2)2(y1)2的一条直径,若椭圆E经过A,B两点,求椭圆E的方程解:(1)过点(c,0),(0,b)的直线方程为bxcybc0,则原点O到该直线的距离d,由dc,得a2b2,解得离心率.(2)法一:由(1)知,椭圆E的方程为x24y24b2.依题意,圆心M(2,1)是线段AB的中点,且|AB|.易知,AB与x轴不垂直,设其方程为yk(x2)1,代入得(14k2)x28k(2k1)x4(2k1)24b20.设A(x1,y1),B(x2,y2),则x1x2,x1x2.由x1x24,得4,解得k.从而x1x282b2.于是|AB| |x1x2| 由|AB|,得,解得b23.故椭圆E的方程为1.法二:由(1)知,椭圆E的方程为x24y24b2.依题意,点A,B关于圆心M(2,1)对称,且|AB|.设A(x1,y1),B(x2,y2),则x4y4b2,x4y4b2,两式相减并结合x1x24,y1y22,得4(x1x2)8(y1y2)0.易知AB与x轴不垂直,则x1x2,所以AB的斜率kAB.因此直线AB的方程为y(x2)1,代入得x24x82b20.所以x1x24,x1x282b2.于是|AB| |x1x2|.由|AB|,得,解得b23.故椭圆E的方程为1.5(2015安徽高考)设椭圆E的方程为1(ab0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|2|MA|,直线OM的斜率为.(1)求E的离心率e;(2)设点C的坐标为(0,b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程解:(1)由题设条件知,点M的坐标为,又kOM,从而,进而得ab,c2b,故e.(2)由题设条件和(1)的计算结果可得,直线AB的方程为1,点N的坐标为.设点N关于直线AB的对称点S的坐标为,则线段NS的中点T的坐标为.又点T在直线AB上,且kNSkAB1,从而有解得b3.所以a3,故椭圆E的方程为1.6.(2015江苏高考)如图,在平面直角坐标系xOy中,已知椭圆1(ab0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC2AB,求直线AB的方程解:(1)由题意,得且c3,解得a,c1,则b1,所以椭圆的标准方程为y21.(2)当ABx轴时,AB,又CP3,不合题意当AB与x轴不垂直时,设直线AB的方程为yk(x1),A(x1,y1),B(x2,y2),将AB的方程代入椭圆方程,得(12k2)x24k2x2(k21)0,则x1,2,C的坐标为,且AB.若k0,则线段AB的垂直平分线为y轴,与左准线平行,不合题意从而k0,故直线PC的方程为y,则P点的坐标为,从而PC.因为PC2AB,所以,解得k1.此时直线AB的方程为yx1或yx1.7(2015北京高考)已知椭圆C:1(ab0)的离心率为,点P(0,1)和点A(m,n)(m0)都在椭圆C上,直线PA交x轴于点M.(1)求椭圆C的方程,并求点M的坐标(用m,n表示)(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N.问:y轴上是否存在点Q,使得OQMONQ?若存在,求点Q的坐标;若不存在,说明理由解:(1)由题意得解得a22.故椭圆C的方程为y21.设M(xM,0)因为m0,所以1n0,b0),则|BM|AB|2a,MBx18012060,M点的坐标为.M点在双曲线上,1,ab,ca,e.答案:2(2015四川高考改编)过双曲线x21的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A,B两点,则|AB|_.解析:由题意知,双曲线x21的渐近线方程为yx,将xc2代入得y2,即A,B两点的坐标分别为(2,2),(2,2),所以|AB|4.答案:43(2015全国卷)已知双曲线过点(4,),且渐近线方程为yx,则该双曲线的标准方程为_解析:法一:双曲线的渐近线方程为yx,可设双曲线的方程为x24y2(0)双曲线过点(4,),164()24,双曲线的标准方程为y21.法二:渐近线yx过点(4,2),而0,b0)由已知条件可得解得双曲线的标准方程为y21.答案:y214(2015北京高考)已知双曲线y21(a0)的一条渐近线为xy0,则a_.解析:双曲线y21的渐近线为y,已知一条渐近线为xy0,即yx,因为a0,所以,所以a.答案:5(2015湖南高考)设F是双曲线C:1的一个焦点若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为_解析:不妨设F(c,0),PF的中点为(0,b)由中点坐标公式可知P(c,2b )又点P在双曲线上,则1,故5,即e.答案:6(2015广东高考改编)已知双曲线C:1的离心率e,且其右焦点为F2(5,0),则双曲线C的方程为_解析:e,F2(5,0),c5,a4,b2c2a29,双曲线C的标准方程为1.答案:17(2015江苏高考)在平面直角坐标系xOy中,P为双曲线x2y21右支上的一个动点,若点P到直线xy10的距离大于c恒成立,则实数c的最大值为_解析:所求的c的最大值就是双曲线的一条渐近线xy0与直线xy10的距离,此距离d.答案:8(2015全国卷改编)已知M(x0,y0)是双曲线C:y21上的一点,F1,F2是C的两个焦点若M0,则y0的取值范围是_解析:由题意知a,b1,c,F1(,0),F2(,0),(x0,y0),M(x0,y0)0,(x0)(x0)y0,即x3y0.点M(x0,y0)在双曲线上,y1,即x22y,22y3y0,y0.答案:9(2015重庆高考改编)设双曲线1(a0,b0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线,两垂线交于点D.若D到直线BC的距离小于a,则该双曲线的渐近线斜率的取值范围是_解析:由题意得A(a,0),不妨取B,C,由双曲线的对称性知D在x轴上,设D(x0,0),由BDAC得1,解得cx0,由题可知cx0aac,所以c2a2b21100,b0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y24x的准线上,则双曲线的方程为_解析:由双曲线的渐近线yx过点(2,),可得2.由双曲线的焦点(,0)在抛物线y24x的准线x上,可得 .由解得a2,b,所以双曲线的方程为1.答案:12(2015天津高考)已知椭圆1(ab0)的左焦点为F(c,0),离心率为,点M在椭圆上且位于第一象限,直线FM被圆x2y2截得的线段的长为c,|FM|.(1)求直线FM的斜率;(2)求椭圆的方程;(3)设动点P在椭圆上,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围解:(1)由已知,有,又由a2b2c2,可得a23c2,b22c2.设直线FM的斜率为k(k0),则直线FM的方程为yk(xc)由已知,有222,解得k.(2)由(1)得椭圆方程为1,直线FM的方程为y(xc),两个方程联立,消去y,整理得3x22cx5c20,解得xc或xc.因为点M在第一象限,所以点M的坐标为.由|FM| ,解得c1,所以椭圆的方程为1.(3)设点P的坐标为(x,y),直线FP的斜率为t,即t,则直线FP的方程为yt(x1)(x1),与椭圆方程联立消去y,整理得2x23t2(x1)26.又由已知,得t ,解得x1,或1x0.设直线OP的斜率为m,得m,即ymx(x0),与椭圆方程联立,整理可得m2.当x时,有yt(x1)0,于是m ,得m.当x(1,0)时,有yt(x1)0,因此m0,于是m ,得m.综上,直线OP的斜率的取值范围是.3(2015湖北高考)一种作图工具如图所示O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DNON1,MN3.当栓子D在滑槽AB内作往复运动时,带动N绕O转动一周(D不动时,N也不动),M处的笔尖画出的曲线记为C.以O为原点,AB所在的直线为x轴建立如图所示的平面直角坐标系(1)求曲线C的方程(2)设动直线l与两定直线l1:x2y0和l2:x2y0分别交于P,Q两点若直线l总与曲线C有且只有一个公共点,试探究:OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由解:(1)设点D(t,0)(|t|2),N(x0,y0),M(x,y),依题意,2,且|1,所以(tx,y)2(x0t,y0),且即且t(t2x0)0.由于当点D不动时,点N也不动,所以t不恒等于0,于是t2x0,故x0,y0.代入xy1,可得1,即所求的曲线C的方程为1.(2)当直线l的斜率不存在时,直线l为x4或x4,都有SOPQ448.当直线l的斜率存在时,设直线l:ykxm,由消去y,可得(14k2)x28kmx4m2160.因为直线l总与椭圆C有且只有一个公共点,所以64k2m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论