全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2课时 分类加法计数原理与分步乘法计数原理的应用A级基础巩固一、选择题1植树节那天,四位同学植树,现有3棵不同的树,若一棵树限1人完成,则不同的植树方法种数有()A123 B234C34 D43解析:完成这件事分三步第一步,植第一棵树,有4种不同的方法;第二步,植第二棵树,有4种不同的方法;第三步,植第三棵树,也有4种不同的方法由分步乘法计数原理得:N44443,故选D.答案:D2从1,2,3,4,5五个数中任取3个,可组成不同的等差数列的个数为( )A2 B4C6 D8解析:分两类:第一类,公差大于0,有以下4个等差数列:1,2,3,2,3,4,3,4,5,1,3,5;第二类,公差小于0,也有4个根据分类加法计数原理可知,可组成的不同的等差数列共有448(个)答案:D3从集合1,2,3和1,4,5,6中各取1个元素作为点的坐标,则在直角坐标系中能确定不同点的个数为()A12 B11C24 D23解析:先在1,2,3中取出1个元素,共有3种取法,再在1,4,5,6中取出1个元素,共有4种取法,取出的2个数作为点的坐标有2种方法,由分步乘法计数原理知不同的点的个数有N34224(个)又点(1,1)被算了两次,所以共有24123(个)答案:D4已知x2,3,7,y31,24,4,则xy可表示不同的值的个数是()A112 B1113C236 D339解析:x,y在各自的取值集合中各选一个值相乘求积,这件事可分两步完成第一步,x在集合2,3,7中任取一个值有3种方法;第二步,y在集合31,24,4中任取一个值有3种方法根据分步乘法计数原理知,不同值有339(个)答案:D5方程ayb2x2c中的a,b,c3,2,0,1,2,3,且a,b,c互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有()A60条 B62条 C71条 D80条解析:方程ayb2x2c变形得x2y,若表示抛物线,则a0,b0,所以,分b3,2,1,2,3五种情况:(1)若b3,(2)若b3,以上两种情况下有9条重复,故共有16723条;同理当b2,或2时,共有23条;当b1时,共有16条,综上,共有23231662种答案:B二、填空题6甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是_(用数字作答)解析:甲、乙、丙均有7中不同的站法,故不考虑限制的不同站法有777343种,其中三个人站在同一级台阶上有7种站法,故符合本题要求的不同站法有3437336.答案:3367甲、乙、丙3个班各有三好学生3,5,2名,现准备推选2名来自不同班的三好学生去参加校三好学生代表大会,共有_种不同的推选方法解析:分为三类:第一类,甲班选一名,乙班选一名,根据分步乘法计数原理,选法有3515(种);第二类,甲班选一名,丙班选一名,根据分步乘法计数原理,选法有326(种);第三类,乙班选一名,丙班选一名,根据分步乘法计数原理,选法有5210(种)综合以上三类,根据分类加法计数原理,不同选法共有1561031(种)答案:318用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有_个(用数字作答)解析:若不考虑数字2,3至少都出现一次的限制,对个位,十位,百位,千位,每个“位置”都有两种选择,所以共有2416个四位数,然后再减去“2 222,3 333”这两个数,故共有16214个满足要求的四位数答案:14三、解答题9某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人(1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人中各选1人去献血,有多少种不同的选法?解:从O型血的人中选1人有28种不同的选法,从A型血的人中选1人有7种不同的选法,从B型血的人中选1人有9种不同的选法,从AB型血的人中选1人有3种不同的选法(1)任选1人去献血,即无论选哪种血型的哪一个人,“任选1人去献血”这件事情都可以完成,所以用分类加法计数原理,不同的选法有2879347(种)(2)要从四种血型的人中各选1人,即从每种血型的人中各选出1人后,“各选1人去献血”这件事情才完成,所以用分步乘法计数原理,不同的选法有287935 292(种)108张卡片上写着0,1,2,7共8个数字,取其中的三张卡片排放在一起,可组成多少个不同的三位数?解:先排百位数字,从1,2,7共7个数字中选一个,有7种选法;再排十位数字,从除去百位数字外,剩余的7个数字(包括0)中选一个,有7种选法;最后排个位数字,从除前两步选出的数字外,剩余的6个数字中选一个,有6种选法由分步乘法计数原理得,共可以组成的不同三位数有776294(个)B级能力提升1我国足球超级联赛(中超)的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分,一球队打完15场,积分33分,若不考虑顺序,该队胜、负、平的情况有()A3种 B4种 C5种 D6种解析:设该队胜、负、平的场数分别为x,y,z,则依题意有xyz15,3xy33,则y是3的倍数,列举为x9,y6,z0;x10,y3,z2,x11,y0,z4,故根据分类加法计数原理得,该队胜、负、平的情况有3种答案:A2数字1,2,3,9这九个数字填写在如图的9个空格中,要求每一行从左到右依次增大,每列从上到下也依次增大,当数字4固定在中心位置时,则所有填写空格的方法共有_种4解析:必有1、4、9在主对角线上,2、3只有两种不同的填法,对于它们的每一种填法,5只有两种填法对于5的每一种填法,6、7、8只有3种不同的填法,由分步计数原理知共有22312种填法答案:123某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A,B,C,A1,B1,C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有多少种?解:第一步,在点A1,B1,C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中国运营商4G网络项目经营分析报告
- 2026年中国云通信项目经营分析报告
- 2025校招:会计面试题及答案
- 2025校招:工业机器人运维题库及答案
- 2025校招:结构工程师真题及答案
- 2025年中铁十一局集团有限公司招聘(4-5人)笔试考试参考题库附答案解析
- 农林水利项目商业计划书
- 2026年中国电脑割字机项目经营分析报告
- 2026年云南省文山州医学类博士研究生招引(19人)笔试考试参考试题附答案解析
- 企业法务合规培训体系建设与实施方案
- 中心导管-种类-介绍课件
- 电子商务说课公开课一等奖市优质课赛课获奖课件
- 中国远洋海运集团笔试题库
- 光伏组件技术参数资料
- 《邮轮运营管理》2邮轮公司
- LY/T 2787-2017国家储备林改培技术规程
- 油罐防腐施工方案
- 宏基因组测序在临床中的应用mNGS
- 绿地概念方案汇报final
- 大气污染工程课程设计-设计一台双筒CLTA型旋风除尘器
- nsc330系列通信控制装置技术使用说明书v8.0
评论
0/150
提交评论