




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆 的 方 程(25分钟50分)一、选择题(每小题5分,共30分)1.方程x2+y2+4mx-2y+5m=0表示圆的充要条件的是()A.m1B.m1C.m1【解析】选B.由(4m)2+4-45m0,得m1.2.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,为半径的圆的方程为()A.x2+y2-2x+4y=0B.x2+y2+2x+4y=0C.x2+y2+2x-4y=0D.x2+y2-2x-4y=0【解析】选C.由(a-1)x-y+a+1=0得a(x+1)-(x+y-1)=0,所以直线恒过定点(-1,2).所以圆的方程为(x+1)2+(y-2)2=5,即x2+y2+2x-4y=0.3.方程|x|-1=所表示的曲线是()A.一个圆B.两个圆C.半个圆D.两个半圆【解析】选D.由题意得即或故原方程表示两个半圆.4.(2016运城模拟)若圆x2+y2-2ax+3by=0的圆心位于第三象限,那么直线x+ay+b=0一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解析】选D.圆x2+y2-2ax+3by=0的圆心为,则a0.直线y=-x-,k=-0,-0,直线不经过第四象限.5.若曲线C:x2+y2+2ax-4ay+5a2-4=0上所有的点均在第二象限内,则a的取值范围为()A.(-,-2)B.(-,-1)C.(1,+)D.(2,+)【解题提示】圆上的所有点都在第二象限,因此圆心必在第二象限,且圆心到两坐标轴的距离大于半径.【解析】选D.曲线C的方程可化为(x+a)2+(y-2a)2=4,其为圆心为(-a,2a),半径为2的圆,要使圆C的所有的点均在第二象限内,则圆心(-a,2a)必须在第二象限,从而有a0,并且圆心到两坐标轴的最小距离应大于圆C的半径,易知圆心到坐标轴的最小距离为|a|,则有|a|2,得a2.6.(2016忻州模拟)已知方程x2+y2+kx+2y+k2=0所表示的圆有最大的面积,则取最大面积时,该圆的圆心的坐标为()A.(-1,1)B.(-1,0)C.(1,-1)D.(0,-1)【解析】选D.由x2+y2+kx+2y+k2=0知所表示圆的半径r=,当k=0时,rmax=1,此时圆的方程为x2+y2+2y=0,即x2+(y+1)2=1,所以圆心为(0,-1).二、填空题(每小题5分,共20分)7.(2016太原模拟)在平面直角坐标系xOy中已知圆C:x2+(y-1)2=5,A为圆C与x轴负半轴的交点,过点A作圆C的弦AB,记线段AB的中点为M.若OA=OM,则直线AB的斜率为.【解析】C(0,1),所以A(-2,0),连接CM,显然CMAB,因此,四点C,M,A,O共圆,且AC就是该圆的直径,2R=AC=,在三角形OCM中,利用正弦定理得2R=,根据题意,OA=OM=2,所以,=,所以sinOCM=,tanOCM=-2(OCM为钝角),而OCM与OAM互补,所以tanOAM=2,即直线AB的斜率为2.答案:28.(2016新乡模拟)已知在RtABC中,A(0,0),B(6,0),则直角顶点C的轨迹方程为.【解析】依题意,顶点C的轨迹是以AB为直径的圆,且去掉端点A,B,圆心坐标为(3,0),半径为3,故直角顶点C的轨迹方程为(x-3)2+y2=9(y0).答案:(x-3)2+y2=9(y0)【一题多解】解答本题还可以用如下的方法解决:设顶点C的坐标为(x,y),由于ACBC,故kACkBC=-1,所以=-1,所以x2+y2-6x=0,即直角顶点C的轨迹方程为(x-3)2+y2=9(y0).答案:(x-3)2+y2=9(y0)9.当方程x2+y2+kx+2y+k2=0所表示的圆的面积取最大值时,直线y=(k-1)x+2的倾斜角=.【解析】由题意知,圆的半径r=1,当半径r取最大值时,圆的面积最大,此时k=0,r=1,所以直线方程为y=-x+2,则有tan=-1,又0,),故=.答案:10.定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离.已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=.【解题提示】先求出圆C2上的点到直线y=x的最小值,从而得出曲线C1:y=x2+a到直线l:y=x的距离,再利用平行线的距离即可求出a的值.【解析】x2+(y+4)2=2到直线l:y=x的距离为-=,所以y=x2+a到直线l:y=x的距离为,而与y=x平行且距离为的直线有两条,分别是y=x+2与y=x-2,而抛物线y=x2+a与y=x+2相切,可求得a=.答案:(20分钟40分)1.(5分)设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆圆心的距离|C1C2|=()A.4B.4C.8D.8【解题提示】由已知可知两圆均在第一象限,且圆心的横、纵坐标相等,再由已知条件得出关于圆心的方程,进而求出两圆心的距离.【解析】选C.因为两圆与两坐标轴都相切,且都经过点(4,1),所以两圆圆心均在第一象限且横、纵坐标相等.设两圆的圆心分别为(a,a),(b,b),则有(4-a)2+(1-a)2=a2,(4-b)2+(1-b)2=b2,即a,b为方程(4-x)2+(1-x)2=x2的两个根,整理得x2-10x+17=0,所以a+b=10,ab=17.所以(a-b)2=(a+b)2-4ab=100-417=32,所以|C1C2|=8.2.(5分)(2016邯郸模拟)若PAB是圆C:(x-2)2+(y-2)2=4的内接三角形,且PA=PB,APB=120,则线段AB的中点的轨迹方程为()A.(x-2)2+(y-2)2=1B.(x-2)2+(y-2)2=2C.(x-2)2+(y-2)2=3D.x2+y2=1【解析】选A.设线段AB的中点为D,则由题意,PA=PB,APB=120,所以ACB=120,因为CB=2,所以CD=1,所以线段AB的中点的轨迹是以C为圆心,1为半径的圆,所以线段AB的中点的轨迹方程是:(x-2)2+(y-2)2=1.3.(5分)已知直线ax+by=1(a,b是实数)与圆O:x2+y2=1(O是坐标原点)相交于A,B两点,且AOB是直角三角形,点P(a,b)是以点M(0,1)为圆心的圆M上的任意一点,则圆M的面积的最小值为.【解析】因为直线与圆O相交所得AOB是直角三角形,可知AOB=90,所以圆心O到直线的距离为=,所以a2=1-b20,即-b.设圆M的半径为r,则r=|PM|=(2-b),又-b,所以+1|PM|-1,所以圆M的面积的最小值为(3-2).答案:(3-2)【加固训练】已知AC,BD为圆O:x2+y2=4的两条相互垂直的弦,垂足为M(1,),则四边形ABCD的面积的最大值为.【解析】如图,取AC的中点F,BD的中点E,则OEBD,OFAC.又ACBD,所以四边形OEMF为矩形,设|OF|=d1,|OE|=d2,所以+=|OM|2=3.又|AC|=2,|BD|=2,所以S四边形ABCD=|AC|BD|=2=2=2=2.因为03.所以当=时,S四边形ABCD有最大值是5.答案:54.(12分)(2016许昌模拟)在平面直角坐标系xOy中,已知圆心在第二象限,半径为2的圆C与直线y=x相切于坐标原点O.(1)求圆C的方程.(2)试探求C上是否存在异于原点的点Q,使Q到定点F(4,0)的距离等于线段OF的长?若存在,请求出点Q的坐标;若不存在,请说明理由.【解析】(1)设圆C的圆心为C(a,b),则圆C的方程为(x-a)2+(y-b)2=8.因为直线y=x与圆C相切于原点O,所以O点在圆C上,且OC垂直于直线y=x,于是有或由于点C(a,b)在第二象限,故a0,所以圆C的方程为(x+2)2+(y-2)2=8.(2)假设存在点Q符合要求,设Q(x,y),则有解之得x=或x=0(舍去),y=.所以存在点Q,使Q到定点F(4,0)的距离等于线段OF的长.5.(13分)(2016朔州模拟)在平面直角坐标系xOy中,已知点A(-3,4),B(9,0),C,D分别为线段OA,OB上的动点,且满足AC=BD.(1)若AC=4,求直线CD的方程.(2)证明:OCD的外接圆恒过定点.【解析】(1)若AC=4,则BD=4,因为B(9,0),所以D(5,0).因为A(-3,4),所以|OA|=5,则|OC|=1,直线OA的方程为y=-x,设C(3a,-4a),-1a0,则|OC|=5|a|=-5a=1,解得a=-,则C,则CD的方程为=,整理得x+7y-5=0,即直线CD的方程为x+7y-5=0.(2)设C(3a,-4a),-1a0,则|AC|=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 少儿编程初级模拟考试题目
- 名著《三峡》说课稿教学重点释义
- 2025年肾脏内科肾脏疾病诊疗方案考核答案及解析
- 微信会议系统功能设计方案
- IT外包合同常见风险及防范措施
- 建筑工程项目协调管理方案
- 小学数学单元测试题及答题指南
- 学生伤害事故处理流程规范
- 精神科护理工作总结与案例分享
- 数控技术课程在线作业指导
- 2026中国移动校园招聘备考考试题库附答案解析
- 2025年大学生国防科技知识竞赛题库及答案
- 2025年全国水利行业安全生产竞赛测试题及答案
- 2025年新人教版语文三年级上册全册教学课件
- 2025年全国质量月主题宣讲课件
- 施工升降机安全技术培训材料
- 安全培训反三违课件
- 石墨化工艺基础知识培训
- 刑事案件二次审判会见笔录范文
- 2025年福建省职业技能鉴定考试(劳动关系协调员·一级/高级技师)历年参考题库含答案详解(5卷)
- 小学中段阅读教学讲座
评论
0/150
提交评论