




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【大高考】2017版高考数学一轮总复习 第9章 平面解析几何 第6节 直线与圆锥曲线的位置关系模拟创新题 理一、选择题1.(2016河北张家口模拟)设F为抛物线y24x的焦点,A、B、C为该抛物线上三点,若0,则|等于()A.9 B.6 C.4 D.3解析设A、B、C三点坐标分别为(x1,y1),(x2,y2),(x3,y3).由题意知F(1,0),0,x1x2x33.根据抛物线定义,有|x11x21x31336.故选B.答案B2.(2016嘉兴一模)经过椭圆y21的一个焦点作倾斜角为45的直线l,交椭圆于A,B两点.设O为坐标原点,则等于()A.3 B.C.或3 D.解析依题意,当直线l经过椭圆的右焦点(1,0)时,其方程为y0tan 45(x1),即yx1,代入椭圆方程y21并整理得3x24x0,解得x0或x,所以两个交点坐标分别为(0,1),同理,直线l经过椭圆的左焦点时,也可得.答案B3.(2015合肥模拟)如图所示,A是圆O内一定点,B是圆周上一个动点,AB的中垂线CD与OB交于E,则点E的轨迹是()A.圆 B.椭圆C.双曲线 D.抛物线解析由题意知,|EA|EO|EB|EO|r(r为圆的半径)且r|OA|,故E的轨迹为以O,A为焦点的椭圆,故选B.答案B4.(2014石家庄二模)直线3x4y40与抛物线x24y和圆x2(y1)21从左到右的交点依次为A,B,C,D,则的值为()A.16 B. C.4 D.解析由得x23x40,xA1,yA,xD4,yD4,直线3x4y40恰过抛物线的焦点F(0,1),且该圆圆心为F(0,1),|AF|yA1,|DF|yD15,故选B.答案B二、填空题5.(2016山东枣庄模拟)已知双曲线C:1(a0,b0)的渐近线与圆(x2)2y21相交,则双曲线C的离心率的取值范围是_.解析双曲线渐近线为bxay0,其与圆相交,则圆心到渐近线的距离小于半径,即1,3b2a2,c2a2b2a2,e.又e1,1e.答案创新导向题直线与圆锥曲线相交问题6.已知直线l的斜率为2,M,N是直线l与双曲线C:1(a0,b0)的两个交点,若MN的中点为P(2,1),则C的离心率为()A. B. C.2 D.2解析设M(x1,y1),N(x2,y2),则1,1,点P(2,1)是MN的中点,x1x24,y1y22.又直线l斜率为2,则2,由得,结合上述可得a2b2,c22a2,e.故选A.答案A直线与圆锥曲线相切问题7.若椭圆1的焦点在x轴上,过点(2,1)作圆x2y24的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程为_.解析设切点坐标为(m,n),则1,即m2n2n2m0,m2n24,2mn40,即AB的直线方程为2xy40,线AB恰好经过椭圆的右焦点和上顶点,2c40;b40, 解得c2,b4,所以a2b2c220,所以椭圆方程为1.故答案为1.答案1专项提升测试模拟精选题一、选择题8.(2016山东日照下学期第一次模拟)已知抛物线y28x的准线与双曲线1相交于A,B两点,点F为抛物线的焦点,ABF为直角三角形,则双曲线的离心率为()A.3 B.2 C. D.解析抛物线的准线为x2,代入双曲线方程得y,不妨设A,ABF是等腰直角三角形,p4,求得a,双曲线的离心率e3.答案A二、填空题9.(2015泉州质检)若抛物线yax21上恒有关于直线xy0对称的相异的两点A,B,则a的取值范围是_.解析设抛物线上的两点为A(x1,y1),B(x2,y2),AB的方程为yxb,代入抛物线方程yax21,得ax2x(b1)0,则x1x2.设AB的中点为M(x0,y0),则x0,y0x0bb.由于M(x0,y0)在直线xy0上,故x0y00,由此得b,此时ax2x(b1)0变为ax2x0.由14a0,解得a.答案三、解答题10.(2015济宁模拟)已知中心在原点,焦点在x轴上的椭圆C的离心率为,其中一个顶点是抛物线x24y的焦点.(1)求椭圆C的标准方程;(2)若过点P(2,1)的直线l与椭圆C在第一象限相切于点M,求直线l的方程和点M的坐标.解(1)设椭圆C的方程为1(ab0),由题意,得b.又,解得a2,c1,故椭圆C的方程为1.(2)因为过点P(2,1)的直线l与椭圆在第一象限相切,所以l的斜率存在,故可设直线l的方程为yk(x2)1.由得(34k2)x28k(2k1)x16k216k80.因为直线l与椭圆相切,所以8k(2k1)24(34k2)(16k216k8)0.整理,得32(6k3)0,解得k.所以直线l的方程为y(x2)1x2.将k代入式,可以解得M点的横坐标为1,故切点M的坐标为.11.(2014广州模拟)如图,已知椭圆1(ab0)的离心率为,且过点A(0,1).(1)求椭圆方程;(2)过A作两条互相垂直的直线分别交椭圆于点M,N,求证:直线MN恒过定点P.(1)解由题意知,e,b1,a2c21,解得a2,所以椭圆C的标准方程为y21.(2)证明设直线l1的方程为ykx1(k0),由方程组得(4k21)x28kx0,解得x1,x20,所以xM,yM,用代替上面的k,可得xN,yN.因为kMP,kNP,所以kMPkNP,因为MP,NP共点于P,所以M,N,P三点共线,故直线MN恒过定点P.12.(2014太原二模)如图,设椭圆的中心为原点O,长轴在 x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且AB1B2是面积为4的直角三角形.(1)求该椭圆的离心率和标准方程;(2)过B1作直线l交椭圆于P,Q两点,使PB2QB2,求直线l的方程.解(1)如图,设所求椭圆的标准方程为1(ab0),右焦点F2(c,0).因为AB1B2是直角三角形,且|AB1|AB2|,B1AB2为直角,从而|OA|OB2|,即b,结合c2a2b2得4b2a2b2,故a25b2,c24b2,所以离心率e.在RtAB1B2中,OAB1B2,故SAB1B2|B1B2|OA|OB2|OA|bb2.由题设条件SAB1B24,得b24,从而a25b220,因此所求椭圆的标准方程为1.(2)由(1)知B1(2,0),B2(2,0).由题意,直线l的倾斜角不为0,故可设直线l的方程为:xmy2.代入椭圆的方程得(m25)y24my160.设P(x1,y1),Q(x2,y2),则y1,y2是上面方程的两根,因此y1y2,y1y2,又(x12,y1),(x22,y2),所以(x12)(x22)y1y2(my14)(my24)y1y2(m21)y1y24m(y1y2)1616,由PB2QB2,知0,即16m2640,解得m2.所以满足条件的直线有两条,其方程分别为x2y20和x2y20.创新导向题椭圆方程及存在性问题求解13.已知中点在原点,焦点在x轴上的椭圆C的离心率为,且经过点M.(1)求椭圆C的方程;(2)是否存在过点P(2,1)的直线l与椭圆C相交于不同的两点A,B,且满足2?若存在,求出直线l的方程;若不存在,请说明理由.解(1)设椭圆C的方程为1(ab0).e,a24c2,b23c2,又椭圆C经过点M,1,解得c21,a24,b23,故椭圆C的方程为1.(2)若存在直线l满足条件,由题意可知直线l存在斜率,设直线l的方程为yk(x2)1,由得(34k2)x28k(2k1)x16k216k80.因为直线l与椭圆C相交于不同的两点A、B,设A、B两点的坐标分别为(x1,y1),(x2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国青年社区商业模式创新及盈利模式探索报告
- 2025-2030中国青年公寓行业盈利模式创新与财务分析研究报告
- 2025-2030中国青年公寓行业政策导向与投资回报测算报告
- 2025-2030中国青年公寓行业市场进入壁垒与竞争策略研究报告
- 2025-2030中国青年公寓行业ESG标准与投资价值评估
- 2025-2030中国青年公寓智能门锁应用与安全管理评估
- 2025-2030中国青年公寓市场资本布局与融资模式创新研究
- 2025-2030中国青年公寓市场品牌竞争与投资战略规划报告
- 2025-2030中国青年公寓市场下沉机会与区域扩张策略
- 2025-2030中国青年公寓品牌化发展路径与市场竞争力研究
- 汉语阅读教程第一册第二课
- LED照明灯具基础培训
- 上海市静安区2022-2023学年高一下学期期末数学试题(解析版)
- TPM管理知识培训
- 2023年国家公务员考试申论真题及答案解析(地市级)
- 关于无梁楼盖和梁板式楼盖经济性的比较
- 第十四杂环化合物
- RB/T 306-2017汽车维修服务认证技术要求
- 《数学软件》课程教学大纲
- 《细胞工程学》考试复习题库(带答案)
- 粤教花城版小学音乐歌曲《哈哩噜》课件
评论
0/150
提交评论