




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
13.1单调性与最大(小)值第1课时函数的单调性课时目标1.理解函数单调性的性质.2.掌握判断函数单调性的一般方法1函数的单调性一般地,设函数f(x)的定义域为I:(1)如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说函数f(x)在区间D上是_(2)如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说函数f(x)在区间D上是_(3)如果函数yf(x)在区间D上是_或_,那么就说函数yf(x)在这一区间具有_,区间D叫做yf(x)的_2a0时,二次函数yax2的单调增区间为_3k0时,ykxb在R上是_函数4函数y的单调递减区间为_一、选择题1定义在R上的函数yf(x1)的图象如右图所示给出如下命题:f(0)1;f(1)1;若x0,则f(x)0;若x0,其中正确的是()A BC D2若(a,b)是函数yf(x)的单调增区间,x1,x2(a,b),且x1x2,则有()Af(x1)f(x2) D以上都可能3f(x)在区间a,b上单调,且f(a)f(b)0B(x1x2)f(x1)f(x2)0Cf(a)f(x1)f(x2)06函数y的单调递减区间为()A(,3 B(,1C1,) D3,1题号123456答案二、填空题7设函数f(x)是R上的减函数,若f(m1)f(2m1),则实数m的取值范围是_8函数f(x)2x2mx3,当x2,)时是增函数,当x(,2时是减函数,则f(1)_.三、解答题9画出函数yx22|x|3的图象,并指出函数的单调区间10已知f(x),g(x)在(a,b)上是增函数,且ag(x)0时,0f(x)0,则判断f(x)的单调性可以通过作比的方法去解决,即“取值作比变形与1比较判断”1.3函数的基本性质13.1单调性与最大(小)值第1课时函数的单调性知识梳理1(1)增函数(2)减函数(3)增函数减函数(严格的)单调性单调区间2.0,)3.增4.(,0)和(0,)作业设计1B2A由题意知yf(x)在区间(a,b)上是增函数,因为x2x1,对应的f(x2)f(x1)3Df(x)在a,b上单调,且f(a)f(b)0,当f(x)在a,b上单调递增,则f(a)0,当f(x)在a,b上单调递减,则f(a)0,f(b)0,由知f(x)在区间a,b上必有x0使f(x0)0且x0是唯一的4C如图所示,该函数的对称轴为x3,根据图象可知函数在(2,4)上是先递减再递增的5C由函数单调性的定义可知,若函数yf(x)在给定的区间上是增函数,则x1x2与f(x1)f(x2)同号,由此可知,选项A、B、D正确;对于C,若x10解析由f(m1)f(2m1)且f(x)是R上的减函数得m10.83解析f(x)2(x)23,由题意2,m8.f(1)2128133.9解yx22|x|3.函数图象如图所示函数在(,1,0,1上是增函数,函数在1,0,1,)上是减函数函数yx22|x|3的单调增区间是(,1和0,1,单调减区间是1,0和1,)10证明设ax1x2b,g(x)在(a,b)上是增函数,g(x1)g(x2),且ag(x1)g(x2)b,又f(x)在(a,b)上是增函数,f(g(x1)f(g(x2),f(g(x)在(a,b)上是增函数11解函数f(x)在1,)上是增函数证明如下:任取x1,x21,),且x1x2,则f(x2)f(x1).1x10,x2x10,0.f(x2)f(x1)0,即f(x2)f(x1),故函数f(x)在1,)上是增函数12解(1)在f(mn)f(m)f(n)中,令m1,n0,得f(1)f(1)f(0)因为f(1)0,所以f(0)1.(2)函数f(x)在R上单调递减任取x1,x2R,且设x10,所以0f(x2x1)0时,0f(x)10,又f(0)1,所以对于任意的x1R均有f(x1)0.所以f(x2)f(x1)f(x1)f(x2x1)10,即f(x2)f(x1)所以函数f(x)在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025成都银行总行金融科技岗(第三批次)招聘考前自测高频考点模拟试题及一套参考答案详解
- 2025河南新乡事业单位招录203人模拟试卷及答案详解(名校卷)
- 2025安徽阜阳市界首市“政录企用”人才引进8人模拟试卷有答案详解
- 2025广东深圳长虹聚和源科技有限公司招聘业务经理岗位人员考前自测高频考点模拟试题有答案详解
- 2025福建医科大学安全保卫人员招聘2人(四)模拟试卷及答案详解(考点梳理)
- 2025贵阳市某企业招聘工作人员考前自测高频考点模拟试题含答案详解
- 2025年山东辉煌国际物流发展有限公司社会招聘考前自测高频考点模拟试题及答案详解参考
- 2025广东惠州市博罗县碧盛环保科技有限公司招聘及考前自测高频考点模拟试题及答案详解一套
- 2025河南郑州市建筑设计研究院招聘35人考前自测高频考点模拟试题及完整答案详解
- 2025福建南平市供电服务有限公司招聘52人模拟试卷及1套完整答案详解
- 国开2025年《行政领导学》形考作业1-4答案
- 广东省广州市天河执信中学2024-2025学年九年级上学期期中考试化学试卷(含答案)
- 安徽省蚌埠市2025-2026学年高三上学期调研性监测语文(含答案)
- 医生进修6个月汇报大纲
- 外科病人的心理护理讲课件
- 2024年亳州利辛县招聘城市社区专职工作者考试真题
- 农村土地使用权转让协议书
- 部编人教版小学三年级语文上册全册教案
- DL∕T 817-2014 立式水轮发电机检修技术规程
- (高清版)DZT 0334-2020 石油天然气探明储量报告编写规范
- 2024年浙江卷1月读后续写(路痴的自我救赎)讲义-高考英语作文复习专项2
评论
0/150
提交评论